Proof Complexity of Non-classical Logics

  • Olaf Beyersdorff
  • Oliver Kutz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7388)


Proof complexity is an interdisciplinary area of research utilising techniques from logic, complexity, and combinatorics towards the main aim of understanding the complexity of theorem proving procedures. Traditionally, propositional proofs have been the main object of investigation in proof complexity. Due their richer expressivity and numerous applications within computer science, also non-classical logics have been intensively studied from a proof complexity perspective in the last decade, and a number of impressive results have been obtained.

In these notes we give an introduction to this recent field of proof complexity of non-classical logics. We cover results from proof complexity of modal, intuitionistic, and non-monotonic logics. Some of the results are surveyed, but in addition we provide full details of a recent exponential lower bound for modal logics due to Hrubeš [60] and explain the complexity of several sequent calculi for default logic [16,13]. To make the text self-contained, we also include necessary background information on classical proof systems and non-classical logics.


Modal Logic Proof System Intuitionistic Logic Propositional Formula Default Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M.: The complexity of the pigeonhole-principle. Combinatorica 14(4), 417–433 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing 34(1), 67–88 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions. Combinatorica 7(1), 1–22 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amati, G., Aiello, L.C., Gabbay, D.M., Pirri, F.: A proof theoretical approach to default reasoning I: Tableaux for default logic. Journal of Logic and Computation 6(2), 205–231 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Antoniou, G., Wang, K.: Default Logic. In: Handbook of the History of Logic, vol. 8, pp. 517–556. North-Holland (2007)Google Scholar
  6. 6.
    Areces, C., de Nivelle, H., de Rijke, M.: Resolution in Modal, Description and Hybrid Logic. Journal of Logic and Computation 11(5), 717–736 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P., Woods, A.: Exponential lower bounds for the pigeonhole principle. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 200–220 (1992)Google Scholar
  9. 9.
    Beame, P.W., Pitassi, T., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Beyersdorff, O.: On the correspondence between arithmetic theories and propositional proof systems – a survey. Mathematical Logic Quarterly 55(2), 116–137 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Beyersdorff, O.: Proof Complexity of Non-classical Logics. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 15–27. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of propositional default logic. Archive for Mathematical Logic 50(7), 727–742 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bonatti, P.A.: A Gentzen system for non-theorems, Technical Report CD/TR 93/52, Christian Doppler Labor für Expertensysteme (1993)Google Scholar
  16. 16.
    Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3(2), 226–278 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser (1995)Google Scholar
  18. 18.
    Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Brouwer, L.E.J.: Over de Grondslagen der Wiskunde. Ph.D. thesis, Amsterdam (1907), Translation: On the foundation of mathematics. In: Heyting, A., (ed.) Brouwer, Collected Works I, pp.11–101. North-Holland, Amsterdam (1975)Google Scholar
  21. 21.
    Brouwer, L.E.J.: De onbetrouwbaarheid der logische principes. Tijdschrift voor Wijsbegeerte 2, 152–158 (1908), Translation: The unreliability of the logical principles, Ibid, pp. 107–111Google Scholar
  22. 22.
    Brouwer, L.E.J.: Historical Background, Principles and Methods of Intuitionism. South African Journal of Science, 139–146 (1952)Google Scholar
  23. 23.
    Buss, S.R.: The polynomial hierarchy and intuitionistic bounded arithmetic. In: Proc. Structure in Complexity Theory Conference, pp. 77–103 (1986)Google Scholar
  24. 24.
    Buss, S.R.: On model theory for intuitionstic bounded arithmetic with applications to independence. In: Buss, S.R., Scott, P.J. (eds.) Feasible Mathematics, pp. 27–47. Birkhäuser (1990)Google Scholar
  25. 25.
    Buss, S.R.: A note on bootstrapping intuitionistic bounded arithmetic. In: Aczel, P., Simmons, H., Wainer, S. (eds.) Proof Theory: a selection of papers from the Leeds Theory Programme 1990, pp. 142–169. Cambridge University Press (1992)Google Scholar
  26. 26.
    Buss, S.R.: An introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–78. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  27. 27.
    Buss, S.R., Mints, G.: The complexity of the disjunction and existential properties in intuitionistic logic. Annals of Pure and Applied Logic 99(1-3), 93–104 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Buss, S.R., Pudlák, P.: On the computational content of intuitionistic propositional proofs. Annals of Pure and Applied Logic 109(1-2), 49–63 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cadoli, M., Schaerf, M.: A survey of complexity results for nonmonotonic logics. Journal of Logic Programming 17(2/3&4), 127–160 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Carnap, R.: Logische Syntax der Sprache. Kegan Paul (1934), English translation: The Logical Syntax of Language (1937)Google Scholar
  31. 31.
    Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Clarendon Press, Oxford (1997)zbMATHGoogle Scholar
  32. 32.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 174–183 (1996)Google Scholar
  33. 33.
    Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press (2010)Google Scholar
  34. 34.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Cook, S.A., Urquhart, A.: Functional interpretations of feasibly constructive arithmetic. Ann. Pure Appl. Logic 63(2), 103–200 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Logic J. IGPL 8, 265–292 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and implementations. In: Handbook of Automated Reasoning, pp. 1241–1354. Elsevier and MIT Press (2001)Google Scholar
  40. 40.
    Dowd, M.: Model-theoretic aspects of P≠NP (1985) (unpublished manuscript)Google Scholar
  41. 41.
    Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transactions on Computational Logic 2(3), 340–387 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ferrari, M., Fiorentini, C., Fiorino, G.: On the complexity of the disjunction property in intuitionistic and modal logics. ACM Transactions on Computational Logic 6(3), 519–538 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Fitting, M.: Handbook of Modal Logic. In: Modal Proof Theory. Studies in Logic and Practical Reasoning, vol. 3, pp. 85–138. Elsevier (2006)Google Scholar
  44. 44.
    Friedman, H.: One hundred and two problems in mathematical logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Gabbay, D.: Theoretical foundations of non-monotonic reasoning in expert systems. In: Logics and Models of Concurrent Systems, pp. 439–457. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  46. 46.
    Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  47. 47.
    Gabbay, D.M., Maksimova, L.: Interpolation and Definability: Modal and Intuitionistic Logics. Oxford Logic Guides, vol. 46. Clarendon Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  48. 48.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 68–131 (1935)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Brewka, G., Truszczynski, M., Marek, V.W. (eds.): Nonmonotonic Reasoning. Essays Celebrating its 30th Anniversary. College Publications (2011)Google Scholar
  50. 50.
    Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bulletin de la Classe des Sciences de l’Académie Royale de Belgique 15, 183–188 (1929)zbMATHGoogle Scholar
  52. 52.
    Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse Eines Mathematischen Kolloquiums 4, 34–40 (1933)zbMATHGoogle Scholar
  53. 53.
    Goldblatt, R.: Mathematical modal logic: A view of its evolution. Journal of Applied Logic 1, 309–392 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56 (1930)Google Scholar
  57. 57.
    Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)Google Scholar
  58. 58.
    Hrubeš, P.: A lower bound for intuitionistic logic. Annals of Pure and Applied Logic 146(1), 72–90 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Hrubeš, P.: Lower bounds for modal logics. The Journal of Symbolic Logic 72(3), 941–958 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic 157(2-3), 194–205 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Jeřábek, E.: Admissible rules of modal logics. Journal of Logic and Computation 15(4), 411–431 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Jeřábek, E.: Frege systems for extensible modal logics. Annals of Pure and Applied Logic 142, 366–379 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Jeřábek, E.: Complexity of admissible rules. Archive for Mathematical Logic 46(2), 73–92 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Jeřábek, E.: Admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(2), 425–447 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Jeřábek, E.: Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(6), 1149–1163 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Kazakov, Y.: RIQ and SROIQ Are Harder than SHOIQ. In: Brewka, G., Lang, J. (eds.) KR, pp. 274–284. AAAI Press (2008)Google Scholar
  69. 69.
    Kolmogorov, A.N.: On the principle tertium non datur. Mathematics of the USSR, Sbornik 32, 646–667 (1925); Translation in: van Heijenoord, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931. Harvard University Press, Cambridge (1967)zbMATHGoogle Scholar
  70. 70.
    Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic and the Foundations of Mathematics, vol. 142. Elsevier Science Publishers, Amsterdam (1999)CrossRefzbMATHGoogle Scholar
  71. 71.
    Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. The Journal of Symbolic Logic 59, 73–86 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  73. 73.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Krajíček, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic Logic 7(2), 197–212 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Krajíček, J.: Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. The Journal of Symbolic Logic 69(1), 265–286 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54(3), 1063–1079 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Krajíček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Kripke, S.: Semantical Analysis of Intuitionistic Logic, I. In: Crossley, J.N., Dummett, M.A.E. (eds.) Formal Systems and Recursive Functions. Proceedings of the 8th Logic Colloquium, pp. 92–130. North-Holland, Amsterdam (1965)CrossRefGoogle Scholar
  81. 81.
    Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis 4(2), 255–333 (2010); Special Issue on Is Logic Universal?MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley (1918)Google Scholar
  84. 84.
    Makinson, D.: General Theory of Cumulative Inference. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  85. 85.
    Meseguer, J., Martí-Oliet, N.: From Abstract Data Types to Logical Frameworks. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 48–80. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  86. 86.
    Mints, G., Kojevnikov, A.: Intuitionistic Frege systems are polynomially equivalent. Journal of Mathematical Sciences 134(5), 2392–2402 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Mossakowski, T., Diaconescu, R., Tarlecki, A.: What is a logic translation? Logica Universalis 3(1), 95–124 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Mundici, D.: Tautologies with a unique Craig interpolant, uniform vs. nonuniform complexity. Annals of Pure and Applied Logic 27, 265–273 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Orlov, I.E.: The calculus of compatibility of propositions. Mathematics of the USSR, Sbornik 35, 263–286 (1928) (Russian)Google Scholar
  90. 90.
    Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proc. 1st Innovations in Computer Science (2010)Google Scholar
  91. 91.
    Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Pudlák, P.: The lengths of proofs. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  93. 93.
    Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for algebraic proof systems. In: Beame, P.W., Buss, S.R. (eds.) Proof Complexity and Feasible Arithmetic. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 39, pp. 279–296. American Mathematical Society (1998)Google Scholar
  94. 94.
    Razborov, A.A.: Lower bounds on the monotone complexity of boolean functions. Doklady Akademii Nauk SSSR 282, 1033–1037 (1985), English translation in: Soviet Math. Doklady 31, 354–357MathSciNetzbMATHGoogle Scholar
  95. 95.
    Razborov, A.A.: Lower bounds for the polynomial calculus. Computational Complexity 7(4), 291–324 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Reckhow, R.A.: On the lengths of proofs in the propositional calculus. Ph.D. thesis, University of Toronto (1976)Google Scholar
  97. 97.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Risch, V., Schwind, C.: Tableaux-based characterization and theorem proving for default logic. Journal of Automated Reasoning 13(2), 223–242 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Rybakov, V.V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)CrossRefzbMATHGoogle Scholar
  101. 101.
    Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Tarski, A., McKinsey, J.C.C.: Some Theorems about the Sentential Calculi of Lewis and Heyting. Journal of Symbolic Logic 13, 1–15 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    ten Cate, B.: Interpolation for extended modal languages. The Journal of Symbolic Logic 70(1), 223–234 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Tiomkin, M.L.: Proving unprovability. In: Proc. 3rd Annual Symposium on Logic in Computer Science, pp. 22–26 (1988)Google Scholar
  105. 105.
    Tseitin, G.C.: On the complexity of derivations in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)Google Scholar
  106. 106.
    Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1, 425–467 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Oliver Kutz
    • 2
  1. 1.Institut für Theoretische InformatikLeibniz-Universität HannoverGermany
  2. 2.Research Center on Spatial Cognition (SFB/TR 8)Universität BremenGermany

Personalised recommendations