Sensor Based Monitoring for People with Dementia: Searching for Movement Markers in Alzheimer’s Disease for a Early Diagnostic

  • Andre Hoffmeyer
  • Kristina Yordanova
  • Stefan Teipel
  • Thomas Kirste
Part of the Communications in Computer and Information Science book series (CCIS, volume 277)

Abstract

We report on first results of using motion pattern behaviour as a possible diagnostics marker for detection and prediction of alzheimer diseases. We observed elderly subjects with and without dementia and recorded their motion behaviour with mobile sensors for 3 days. Additionally, we analyzed the sensor data offline and used probabilistic models (Hierarchical Hidden Markov Models) to differentiate between healthy subjects and subjects suffering form the disease. Our first results with 32 subjects achieve an accuracy of 91 percent.

Keywords

accelerometer dementia hidden markov model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assisted living and memory care in portland — elitecare.com (June 2011)Google Scholar
  2. 2.
    Atallah, L., Lo, B., King, R., Yang, G.-Z.: Sensor placement for activity detection using wearable accelerometers. In: Proceedings of the 2010 International Conference on Body Sensor Networks, BSN 2010, pp. 24–29. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  3. 3.
    Bieber, G., Hoffmeyer, A., Gutzeit, E., Peter, C., Urban, B.: Activity monitoring by fusion of optical and mechanical tracking technologies for user behavior analysis. In: Proceedings of the 2nd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2009, pp. 45:1–45:6. ACM, New York (2009)Google Scholar
  4. 4.
    Morris, et al.: The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39, 1159–1165 (1989)CrossRefGoogle Scholar
  5. 5.
    Hampel, H., Frank, R., Broich, K., Teipel, S.J., Katz, R.G., Hardy, J., Herholz, K., Bokde, A.L.W., Jessen, F., Hoessler, Y.C., Sanhai, W.R., Zetterberg, H., Woodcock, J., Blennow, K.: Biomarkers for alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 9(7), 560–574 (2010)CrossRefGoogle Scholar
  6. 6.
    Hein, A., Kirste, T.: A Hybrid Approach for Recognizing ADLs and Care Activities Using Inertial Sensors and RFID. In: Stephanidis, C. (ed.) UAHCI 2009, Part II. LNCS, vol. 5615, pp. 178–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kearns, W.D., Nams, V.O., Fozard, J.L.: Tortuosity in movement paths is related to cognitive impairment. Wireless fractal estimation in assisted living facility residents. Methods of Information in Medicine 49(6), 592–598 (2010)CrossRefGoogle Scholar
  8. 8.
    Klack, L., Möllering, C., Ziefle, M., Schmitz-Rode, T.: Future Care Floor: A Sensitive Floor for Movement Monitoring and Fall Detection in Home Environments. In: Lin, J., Nikita, K.S. (eds.) MobiHealth 2010. LNICST, vol. 55, pp. 211–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Liao, L., Fox, D., Kautz, H.A.: Extracting places and activities from gps traces using hierarchical conditional random fields. I. J. Robotic Res. 26(1), 119–134 (2007)CrossRefGoogle Scholar
  10. 10.
    Meiland, F., Reinersmann, A., Bergvall-Kareborn, B., Craig, D., Moelaert, F., Mulvenna, M., Nugent, C., Scully, T., Bengtsson, J., Dres, R.: Cogknow development and evaluation of an ict-device for people with mild dementia. Studies in Health Technology and Informatics (7), 166–177 (2007)Google Scholar
  11. 11.
    Mihailidis, A., Boger, J., Craig, T., Hoey, J.: The coach prompting system to assist older adults with dementia through handwashing: An efficacy study. BMC Geriatrics 8(1), 28 (2008)CrossRefGoogle Scholar
  12. 12.
    Patterson, D.J., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.: Opportunity Knocks: A System to Provide Cognitive Assistance with Transportation Services. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Rowan, J., Mynatt, E.D.: Digital family portrait field trial: Support for aging in place. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 521–530. ACM, New York (2005)CrossRefGoogle Scholar
  14. 14.
    Sueur, J., Aubin, T., Simonis, C.: Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18, 213–226 (2008)CrossRefGoogle Scholar
  15. 15.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Tsai, P.-H., Shih, C.-S., Liu, J.W.-S.: Mobile Reminder for Flexible and Safe Medication Schedule for Home Users. In: Jacko, J.A. (ed.) HCI International 2011, Part III. LNCS, vol. 6763, pp. 107–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    van Kasteren, T.: Activity recognition for health monitoring elderly using temporal probabilistic models. Dissertation, Universiteit van Amsterdam (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andre Hoffmeyer
    • 1
  • Kristina Yordanova
    • 3
  • Stefan Teipel
    • 1
    • 2
  • Thomas Kirste
    • 3
  1. 1.German Centre for Neurodegenerative DiseasesRostockGermany
  2. 2.Department of PsychiatryUniversity of RostockRostockGermany
  3. 3.Institute of Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations