Person Authentication and Activities Analysis in an Office Environment Using a Sensor Network

  • Shuai Tao
  • Mineichi Kudo
  • Hidetoshi Nonaka
  • Jun Toyama
Part of the Communications in Computer and Information Science book series (CCIS, volume 277)


Person authentication and activities analysis are indispensable for providing various personalized services in a smart home/office environment. In this study, we introduce a person localization algorithm using an infrared ceiling sensor network, and realize person authentication anywhere and anytime. The key problem is how to distinguish different persons meeting at the same position. We solve this problem by different moving directions depending on individuals. Furthermore, with the locations and the known identities, multiple persons can be tracked and their interactive behaviors can be analyzed by our system.


localization person authentication activities sensor network infrared sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shankar, M., Burchett, J., Hao, Q., Guenther, B., Brady, D.: Human-tracking systems using pyroelectric infrared detectors. Optical Engineering 45(10), 106401(1)–106401(10) (2006)Google Scholar
  2. 2.
    Song, B., Choi, H., Lee, H.S.: Surveillance tracking system using passive infrared motion sensors in wireless sensor network. In: Information Networking, ICOIN 2008, pp. 1–5 (2008)Google Scholar
  3. 3.
    Zhou, J., Hoang, J.: Real time robust human detection and tracking system. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops, pp. 149–156. IEEE (2005)Google Scholar
  4. 4.
    Sixsmith, A., Johnson, N., Whatmore, R.: Pyroelectric IR sensor arrays for fall detection in the older population. J. Phys. IV France 128, 153–160 (2005)CrossRefGoogle Scholar
  5. 5.
    Toreyin, B., Soyer, E., Onaran, I., Cetin, A.: Falling Person Detection Using Multi-sensor Signal Processing. In: IEEE 15th Signal Processing and Communications Applications, pp. 1–4 (2007)Google Scholar
  6. 6.
    Hengstler, S., Prashanth, D., Fong, S., Aghajan, H.: Mesheye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN 2007, pp. 360–369 (2007)Google Scholar
  7. 7.
    Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1208–1221 (2004)CrossRefGoogle Scholar
  8. 8.
    Sogo, T., Ishiguro, H., Trivedi, M.: Real-time human tracking system with multiple omnidirectional vision sensors. Syst. Comput. Jpn. 35(2), 79–90 (2004)CrossRefGoogle Scholar
  9. 9.
    Lee, T.-Y., Lin, T.-Y., Huang, S.-H., Lai, S.-H., Hung, S.-C.: People Localization in a Camera Network Combining Background Subtraction and Scene-Aware Human Detection. In: Lee, K.-T., Tsai, W.-H., Liao, H.-Y.M., Chen, T., Hsieh, J.-W., Tseng, C.-C. (eds.) MMM 2011, Part I. LNCS, vol. 6523, pp. 151–160. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Yam, C., Nixon, M.S., Matsuo, J.N.: Automated person recognition by walking and running via model-based approches. Pattern Recognition 37(5), 1057–1072 (2003)CrossRefGoogle Scholar
  11. 11.
    Schulz, D., Fox, D., Hightower, J.: People tracking with anonymous and id-sensors using rao-blackwellised particle filters. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 921–928 (2003)Google Scholar
  12. 12.
    Ramasso, E., Panagiotakis, C., Pellerin, D., Rombaut, M.: Human action recognition in videos based on the Transferable Belief Model. Pattern Analysis and Applications 11(1), 1–19 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  14. 14.
    Zappi, P., Farella, E., Benini, L.: Tracking Motion Direction and Distance With Pyroelectric IR Sensors. IEEE Sensors Journal 10(9), 1486–1494 (2010)CrossRefGoogle Scholar
  15. 15.
    Hosokawa, T., Kudo, M., Nonaka, H., Toyama, J.: Soft authentication using an infrared ceiling sensor network. Pattern Analysis and Applications 12(3), 237–249 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nonaka, H., Tao, S., Toyama, J., Kudo, M.: Ceiling sensor network for soft authentication and person tracking using equilibrium line. In: The 1st International Conference of Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 218–223 (2011)Google Scholar
  17. 17.
    Tao, S., Kudo, M., Nonaka, H., Toyama, J.: Person Localization and Soft Authentication Using an Infrared Ceiling Sensor Network. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 122–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shuai Tao
    • 1
  • Mineichi Kudo
    • 1
  • Hidetoshi Nonaka
    • 1
  • Jun Toyama
    • 1
  1. 1.Division of Computer ScienceHokkaido UniversityJapan

Personalised recommendations