Abstract
The use of liposomes as drug delivery systems (DDS) is well known. However, the stability of liposomes (shelf stability in bloodstream) for this kind of application is an issue. One way to address this problem is to develop polymer-liposome complexes to provide an improved stability as well as better selectivity characteristics. This work reports a molecular dynamics (MD) study on polymer-membrane complexes with biomedical interest. A bilayer membrane was used to mimic the liposome surface, whereas the targeted isopropylacrylamide based polymers were replaced by representative oligomers. The MD simulations were performed by using the united-atoms 53A6 GROMOS force-field, with the GROMACS 4.5.4 package in a Linux cluster. Two oligomers were tested, and their interaction with a bilayer surface was analyzed. In order to understand how the oligomer-membrane complex reacts under different thermal environments, the systems were simulated at several temperatures. It was found that the studied oligomers presented distinct effects in the bilayer. The inclusion of cholesterol at the end of isopropylacrylamide chain enabled the permeation of the oligomer and promoted the bilayer stability. On the other hand, both oligomers showed the common tendency of promoting the penetration of water molecules to the bilayer center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berendsen, H.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995). doi:10.1016/0010-4655(95)00042-E
Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W., Hermans, J.: Interaction models for water in relation to protein hydration. Intermol. Forces 11(1), 331–342 (1981)
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984). doi:10.1063/1.448118
Betre, H., Liu, W., Zalutsky, M.R., Chilkoti, A., Kraus, V.B., Setton, L.A.: A thermally responsive biopolymer for intra-articular drug delivery. J. Controlled Release 115(2), 175–182 (2006). DOI:10.1016/j.jconrel.2006.07.022
Cho, S.H., White, S.R., Braun, P.V.: Self-healing polymer coatings. Adv. Mater. 21(6), 645–649 (2009). doi:10.1002/adma.200802008
Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089 (1993). doi:10.1063/1.464397
Desai, S., Perkins, J., Harrison, B.S., Sankar, J.: Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater. Sci. Eng., B 168(1–3), 127–131 (2010). doi:10.1016/j.mseb.2009.11.006
Douliez, J.P., Ferrarini, A., Dufourc, E.J.: On the relationship between C-C and C-D order parameters and its use for studying the conformation of lipid acyl chains in biomembranes. J. Chem. Phys. 109(6), 2513 (1998). doi:10.1063/1.476823
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577 (1995). doi:10.1063/1.470117
Gregoriadis, G.: Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13(12), 527–537 (1995). doi:10.1016/S0167-7799(00)89017–4
Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1), 116–122 (2008). doi:10.1021/ct700200b
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008). doi:10.1021/ct700301q
Hirokawa, Y., Tanaka, T.: Volume phase transition in a nonionic gel. J. Chem. Phys. 81(12), 6379 (1984). doi:10.1063/1.447548
Holland, J.W., Hui, C., Cullis, P.R., Madden, T.D.: Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35(8), 2618–2624 (1996). doi:10.1021/bi952000v
Kucerka, N., Liu, Y., Chu, N., Petrache, H.I., Tristram-Nagle, S., Nagle, J.F.: Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88(4), 2626–2637 (2005). doi:10.1529/biophysj.104.056606
Kucerka, N., Tristram-Nagle, S., Nagle, J.F.: Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys. J. 90(11), L83–L85 (2006). doi:10.1529/biophysj.106.086017
Kukol, A.: Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput. 5(3), 615–626 (2009). doi:10.1021/ct8003468
Lee, S.M., Chen, H., Dettmer, C.M., O’Halloran, T.V., Nguyen, S.T.: Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J. Am. Chem. Soc. 129(49), 15096–15097 (2007). doi:10.1021/ja070748i
Levkin, P.A., Svec, F., Frechet, J.M.J.: Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Adv. Funct. Mater. 19(12), 1993–1998 (2009). doi:10.1002/adfm.200801916
Lewis, B.A., Engelman, D.M.: Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166(2), 211–217 (1983). doi:10.1016/S0022-2836(83)80007-2
Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001). doi:10.1007/s008940100045
Mabrey, S., Sturtevant, J.M.: Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. U S A 73(11), 3862–3866 (1976)
Madhavan, N., Jones, C.W., Weck, M.: Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Acc. Chem. Res. 41(9), 1153–1165 (2008). doi:10.1021/ar800081y
Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An Automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011). doi:10.1021/ct200196m
Miyamoto, S., Kollman, P.A.: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13(8), 952–962 (1992). doi:10.1002/jcc.540130805
Oh, J.K., Lee, D.I., Park, J.M.: Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 34(12), 1261–1282 (2009). doi:10.1016/j.progpolymsci.2009.08.001
Oostenbrink, C., Soares, T.A., van Der Vegt, N.F.A., van Gunsteren, W.F.: Validation of the 53A6 GROMOS force field. Eur. Biophys. J. 34(4), 273–284 (2005). doi:10.1007/s00249-004-0448-6
Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004). doi:10.1002/jcc.20090
Paasonen, L., Romberg, B., Storm, G., Yliperttula, M., Urtti, A., Hennink, W.E.: Temperature-sensitive poly(N-(2-hydroxypropyl)methacrylamide mono/dilactate)-coated liposomes for triggered contents release. Bioconjugate Chem. 18(6), 2131–2136 (2007). doi:10.1021/bc700245p
Petrache, H.I., Tristram-Nagle, S., Nagle, J.F.: Fluid phase structure of EPC and DMPC bilayers. Chem. Phys. Lipids 95(1), 83–94 (1998)
Schüttelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004). doi:10.1107/S0907444904011679
Shukla, R., Murali, V., Bhansali, A.: Flip chip CPU package technology at Intel: a technology and manufacturing overview. In: 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No. 99CH36299), pp. 945–949 (1999). doi:10.1109/ECTC.1999.776299
Spoel, D.V.D., Lindahl, E., Hess, B., Buuren, A.R.V., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A.L.T.M., Feenstra, K.A., Drunen, R.V., Berendsen, H.J.C.: Gromacs User Manual Version 4.5. University of Groningen, Groningen (2010)
Sulkowski, W., Pentak, D., Nowak, K., Sulkowska, A.: The influence of temperature, cholesterol content and pH on liposome stability. J. Mol. Struct. 744–747, 737–747 (2005). doi:10.1016/j.molstruc.2004.11.075
Tristram-Nagle, S., Liu, Y., Legleiter, J., Nagle, J.F.: Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002). doi:10.1016/S0006-3495(02)75333–2
Ulrich, A.S.: Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 22(2), 129–150 (2002)
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005). doi:10.1002/jcc.20291
Wu, C., Zhou, S.: Volume phase transition of swollen gels: discontinuous or continuous? Macromolecules 30(3), 574–576 (1997). doi:10.1021/ma960499a
Wu, C., Zhou, S., Au-yeung, S., Jiang, S.: Volume phase transition of spherical microgel particles. Angew. Makromol. Chem. 240(1), 123–136 (1996). doi:10.1002/apmc.1996.052400111
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ferreira, A.F., Alves, P., Coelho, J.F., Gil, M.H., Simões, P.N. (2013). Molecular Dynamics Study of Oligomer-Membrane Complexes with Biomedical Relevance. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Characterization and Development of Biosystems and Biomaterials. Advanced Structured Materials, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31470-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-31470-4_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31469-8
Online ISBN: 978-3-642-31470-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)