Abductive Reasoning for Continual Dialogue Understanding

  • Miroslav Janíček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7415)


In this paper we present a continual context-sensitive abductive framework for understanding situated spoken natural dialogue. The framework builds up and refines a set of partial defeasible explanations of the spoken input, trying to infer the speaker’s intention. These partial explanations are conditioned on the eventual verification of the knowledge gaps they contain. This verification is done by executing test actions, thereby going beyond the initial context. The approach is illustrated by an example set in the context of human-robot interaction.


Intention recognition natural language understanding abduction context-sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areces, C.: Logic Engineering: The Case of Description and Hybrid Logics. Ph.D. thesis, University of Amsterdam, The Netherlands (2000)Google Scholar
  2. 2.
    Areces, C., Blackburn, P.: Bringing them all together. Journal of Logic and Computation 11(5), 657–669 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baldoni, M., Giordano, L., Martelli, A.: A modal extension of logic programming: Modularity, beliefs and hypothetical reasoning. J. Log. Comp. 8(5), 597–635 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baldoni, M., Giordano, L., Martelli, A., Patti, V.: A modal programming language for representing complex actions. In: Proc. of DYNAMICS 1998, pp. 1–15 (1998)Google Scholar
  5. 5.
    Baldridge, J., Kruijff, G.J.M.: Coupling CCG and Hybrid Logic Dependency Semantics. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, ACL (2002)Google Scholar
  6. 6.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8(3), 339–625 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)Google Scholar
  8. 8.
    Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environments. Journal of Autonomous Agents and Multiagent Systems (2008)Google Scholar
  9. 9.
    Charniak, E., Shimony, S.E.: Probabilistic semantics for cost based abduction. In: AAAI 1990 Proceedings (1990)Google Scholar
  10. 10.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42, 213–261 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fann, K.T.: Peirce’s Theory of Abduction. Mouton, The Hague (1970)CrossRefGoogle Scholar
  12. 12.
    Grice, H.P.: Meaning. The Philosophical Review 66(3), 377–388 (1957)CrossRefGoogle Scholar
  13. 13.
    Hobbs, J.R., Stickel, M.E., Appelt, D.E., Martin, P.A.: Interpretation as abduction. Artificial Intelligence 63(1-2), 69–142 (1993)CrossRefGoogle Scholar
  14. 14.
    Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  15. 15.
    Kate, R.J., Mooney, R.J.: Probabilistic abduction using Markov logic networks. In: Proceedings of the IJCAI 2009 Workshop on Plan, Activity, and Intent Recognition (PAIR 2009), Pasadena, CA, USA (2009)Google Scholar
  16. 16.
    Kruijff, G.J.M.: A Categorial-Modal Logical Architecture of Informativity: Dependency Grammar Logic & Information Structure. Ph.D. thesis, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic (2001)Google Scholar
  17. 17.
    Moens, M., Steedman, M.: Temporal ontology and temporal reference. Computational Linguistics 14(2), 15–28 (1988)Google Scholar
  18. 18.
    Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar
  20. 20.
    Schiffer, S.R.: Meaning. Clarendon Press, Oxford (1972)Google Scholar
  21. 21.
    Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Semantic and Pragmatic Aspects. Reidel Publishing Company, Academia, Dordrecht, Prague (1986)Google Scholar
  22. 22.
    Stickel, M.E.: A Prolog-like inference system for computing minimum-cost abductive explanations in natural-language interpretation. Annals of Mathematics and Artificial Intelligence 4, 89–105 (1991)zbMATHCrossRefGoogle Scholar
  23. 23.
    Stone, M., Thomason, R.H.: Context in abductive interpretation. In: Proceedings of EDILOG 2002: 6th Workshop on the Semantics and Pragmatics of Dialogue (2002)Google Scholar
  24. 24.
    Stone, M., Thomason, R.H.: Coordinating understanding and generation in an abductive approach to interpretation. In: Proceedings of DIABRUCK 2003: 7th Workshop on the Semantics and Pragmatics of Dialogue (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslav Janíček
    • 1
  1. 1.German Research Center for Artificial Intelligence (DFKI)SaarbrückenGermany

Personalised recommendations