Skip to main content

Deconvolution of 3D Fluorescence Microscopy Images Using Graphics Processing Units

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

Abstract

We consider the deconvolution of 3D Fluorescence Microscopy RGB images, describing the benefits arising from facing medical imaging problems on modern graphics processing units (GPUs), that are non expensive parallel processing devices available on many up-to-date personal computers. We found that execution time of CUDA version is about 2 orders of magnitude less than the one of sequential algorithm. Anyway, the experiments lead some reflections upon the best setting for the CUDA-based algorithm. That is, we notice the need to model the GPUs architectures and their characteristics to better describe the performance of GPU-algorithms and what we can expect of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agard, D.A., Hiraoki, Y., Sedat, J.W.: Three-dimensional microscopy: image processing for high-resolution subcellular imaging. In: Proc. SPIE, vol. 1161, pp. 24–30 (1989)

    Google Scholar 

  2. Biggs, D.S.C., Andrews, M.: Acceleration of iterative image restoration algorithms. Applied Optics 36(8), 1766–1775 (1997)

    Article  Google Scholar 

  3. Brigham, E.O.: The Fast Fourier Transform and its application. Prentice Hall Signal Processing Series Alan V. Oppenheim, Series Editor

    Google Scholar 

  4. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25, 015002 (2009)

    Article  MathSciNet  Google Scholar 

  5. Csiszar, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. The Annals of Statistics 19(4), 2031–2066 (1991)

    Article  MathSciNet  Google Scholar 

  6. Hadamard, J.: Sur les problemes aux derivees partielles et leur signification physique. Bull. Univ. Princeton 13, 49–52 (1902)

    MathSciNet  Google Scholar 

  7. Hadamard, J.: Lectures on Cauchy’s problem in Linear Partial Differential Equations. Yale Univ. Press, New Haven (1923)

    MATH  Google Scholar 

  8. Lucy, L.B.: An iterative technique for the rectification of observed images. The Astronomical Journal 79(6), 745–754 (1974)

    Article  Google Scholar 

  9. Johnson, S.G., Frigo, M.: Implementing FFTs in practice in Fast Fourier Transforms. In: Burrus, C.S. (ed.), ch. 11, Rice University, Houston TX: Connexions (September 2008)

    Google Scholar 

  10. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62(1), 55–59 (1972)

    Article  Google Scholar 

  11. Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23, 32–45

    Google Scholar 

  12. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Wiley, Chichester (1977)

    MATH  Google Scholar 

  13. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk. SSSR 39, 195–200 (1943)

    MathSciNet  Google Scholar 

  14. Vardi, V., Shepp, L.A., Kauffman, L.: A statistical model for positron emission tomography. Journal of the American Statistical Association 80(389), 8–37 (1985)

    MathSciNet  MATH  Google Scholar 

  15. NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library (2008), http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_2.0.pdf

  16. Mele, V., Murli, A., Romano, D.: Some remarks on performance evaluation in parallel GPU computing. Preprint del Dipartimento di Matematica e applicazioni. Univerity of Naples Federico II (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Amore, L., Marcellino, L., Mele, V., Romano, D. (2012). Deconvolution of 3D Fluorescence Microscopy Images Using Graphics Processing Units. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics