Combining Smoother and Residual Calculation in v-cycle AMG for Symmetric Problems

  • Maximilian Emans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7203)


We examine a modified implementation of the v-cycle multigrid scheme which takes into account the memory traffic, i.e. the movement of data between the memory and the processing units. It is known that the relatively slow data transfer is responsible for the poor parallel performance of multigrid algorithms on certain shared memory architectures e.g. those with a front-side bus memory controller. The modification is simple but it speeds up computations by up to 15%.


Shared Memory Memory Bandwidth Total Computing Time Multigrid Algorithm Memory Access Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emans, M., van der Meer, A.: Mixed-precision AMG as linear equation solver for definite systems. In: Sloot, P.M.A., Dongarra, G.V.A., Dongarra, J. (eds.) ICCS 2010, Part I. Procedia Computer Science, vol. 1, pp. 175–183. Elsevier Science, North Holland (2010)Google Scholar
  2. 2.
    Haase, G., Reitzinger, S.: Cache issues of algebraic multigrid methods for linear systems with multiple right-hand sides. SIAM Journal on Scientific Computing 27(1), 1–18 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Douglas, C., Hu, J., Ray, J., Thorne, D., Tuminaro, R.: Cache aware multigrid for variable coefficient elliptic problems on adaptive mesh refinement hierarchies. Numerical Linear Algebra with Applications 11, 173–187 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Falgout, R.D., Yang, U.M.: hypre: A Library of High Performance Preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.: ML 5.0 Smoothed Aggregation User’s Guide. SAND 2006-2009 Unlimited Release (2006)Google Scholar
  6. 6.
    McCalpin, J.: Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 19–25 (December 1995)Google Scholar
  7. 7.
    Emans, M.: Efficient parallel AMG methods for approximate solutions of linear systems in CFD applications. SIAM Journal on Scientific Computing 32, 2235–2254 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maximilian Emans
    • 1
    • 2
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)LinzAustria
  2. 2.Industrial Mathematics Competence Center GmbH (IMCC)LinzAustria

Personalised recommendations