Advertisement

Hierarchical Parallel Approach in Vascular Network Modeling – Hybrid MPI+OpenMP Implementation

  • Krzysztof Jurczuk
  • Marek Kretowski
  • Johanne Bezy-Wendling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7203)

Abstract

This paper presents a two-level parallel algorithm of vascular network development. At the outer level, tasks (newly appeared parts of tissue) are spread over processing nodes. Each node attempts to connect/disconnect its assigned parts of tissue in all vascular trees. Communication between nodes is accomplished by a message passing paradigm. At the inner level, subtasks concerning different vascular trees (e.g. arterial and venous) within each task are parallelized by a shared address space paradigm. The solution was implemented on a computing cluster of multi-core nodes with mixed MPI+OpenMP support. The experimental results show that the algorithm provides a significant improvement in computational performance compared with a pure MPI implementation.

Keywords

Message Passing Interface Vascular Tree Master Node Slave Node Master Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gebali, F.: Algorithms and Parallel Computing. Wiley, NJ (2011)zbMATHCrossRefGoogle Scholar
  2. 2.
    Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  3. 3.
    Kretowski, M., Rolland, Y., Bezy-Wendling, J., Coatrieux, J.-L.: Physiologically Based Modeling for Medical Image Analysis: Application to 3D Vascular Networks and CT Scan Angiography. IEEE Trans. Med. Imaging 22(2), 248–257 (2003)CrossRefGoogle Scholar
  4. 4.
    Mescam, M., Kretowski, M., Bezy-Wendling, J.: Multiscale Model of Liver DCE-MRI Towards a Better Understanding of Tumor Complexity. IEEE Trans. Med. Imaging 29(3), 699–707 (2010)CrossRefGoogle Scholar
  5. 5.
    Jurczuk, K., Krętowski, M., Bézy-Wendling, J.: Vascular Network Modeling - Improved Parallel Implementation on Computing Cluster. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 289–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publishers, San Francisco (1997)zbMATHGoogle Scholar
  7. 7.
    Jurczuk, K., Kretowski, M., Bezy-Wendling, J.: Vascular System Modeling in Parallel Environment - Distributed and Shared Memory Approaches. IEEE Trans. Inf. Technol. Biomed. 15(4), 668–672 (2011)CrossRefGoogle Scholar
  8. 8.
    Chapman, B., Jost, B.G., van der Pas, R., Kuck, D.J.: Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, Cambridge (2007)Google Scholar
  9. 9.
    Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP Nodes. In: 17th Euromicro Int. Conf. on Parallel, Distributed & Network-based Processing, pp. 427–436. IEEE Press, Weimar (2009)CrossRefGoogle Scholar
  10. 10.
    Shima, D.T., Ruhrberg, C.: Angiogenesis. In: Pelengaris, S., Khan, M. (eds.) The Molecular Biology of Cancer, pp. 411–423. Blackwell, Oxford (2006)Google Scholar
  11. 11.
    Zamir, M.: Arterial Branching Within the Confines of Fractal L-system Formalism. Journal of General Physiology 118, 267–275 (2001)CrossRefGoogle Scholar
  12. 12.
    Schreiner, W., et al.: Optimized Arterial Trees Supplying Hollow Organs. Medical Engineering & Physics 28(5), 416–429 (2006)CrossRefGoogle Scholar
  13. 13.
    Jones, M.D., Yao, R., Bhole, C.P.: Hybrid MPI-OpenMP Programming for Parallel OSEM PET Reconstruction. IEEE Trans. Nucl. Sci. 53(5), 2752–2758 (2006)CrossRefGoogle Scholar
  14. 14.
    Pope, B., et al.: Performance of Hybrid Programming Models for Multiscale Cardiac Simulations: Preparing for Petascale Computation. IEEE Trans. on Biomed. Eng. 58(10), 2965–2969 (2011)CrossRefGoogle Scholar
  15. 15.
    Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In: Proc. AFIPS, Atlantic City, vol. 30, pp. 483–485 (1967)Google Scholar
  16. 16.
    Curtis-Maury, M., et al.: Prediction Models for Multi-dimensional Power-Performance Optimization on Many Cores. In: Proc. 17th Int. Conf. on Parallel Architectures & Compilation Techniques, pp. 250–259. IEEE Press, Toronto (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krzysztof Jurczuk
    • 1
  • Marek Kretowski
    • 1
  • Johanne Bezy-Wendling
    • 2
    • 3
  1. 1.Faculty of Computer ScienceBialystok University of TechnologyBiałystokPoland
  2. 2.INSERM, U642RennesFrance
  3. 3.University of Rennes 1, LTSIRennesFrance

Personalised recommendations