Advertisement

Zero-Knowledge Protocols for the McEliece Encryption

  • Kirill Morozov
  • Tsuyoshi Takagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

We present two zero-knowledge protocols for the code-based McEliece public key encryption scheme in the standard model. Consider a prover who encrypted a plaintext m into a ciphertext c under the public key pk. The first protocol is a proof of plaintext knowledge (PPK), where the prover convinces a polynomially bounded verifier on a joint input (c,pk) that he knows m without actually revealing it. This construction uses code-based Véron’s zero-knowledge identification scheme. The second protocol, which builds on the first one, is a verifiable McEliece encryption, were the prover convinces a polynomially bounded verifier on a joint input (c,pk,m) that c is a valid encryption of m, without performing decryption. These protocols are the first PPK and the first verifiable encryption for code-based cryptosystems.

Keywords

Commitment Scheme Oblivious Transfer Goppa Code Honest Parti Joint Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, Y., Rabin, M.O.: A Proof of Plaintext Knowledge Protocol and Applications. Manuscript (June 2001), Available as slides from 1998 IACR Distinguished Lecture by M.O. Rabin, http://www.iacr.org/publications/dl/rabin98/rabin98slides.ps
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bendlin, R., Damgård, I.: Threshold Decryption and Zero-Knowledge Proofs for Lattice-Based Cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. on Inf. Theory 24, 384–386 (1978)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bernstein, D.J., Lange, T., Peters, C.: Smaller Decoding Exponents: Ball-Collision Decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Camenisch, J., Damgård, I.: Verifiable Encryption, Group Encryption, and Their Applications to Separable Group Signatures and Signature Sharing Schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome Decoding Problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious Transfer Based on the McEliece Assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Engelbert, D., Overbeck, R., Schmidt, A.: A Summary of McEliece-Type Cryptosystems and their Security. Journal of Mathematical Cryptology 1, 151–199 (2007), Walter de GruyterMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Fischer, J.-B., Stern, J.: An Efficient Pseudo-random Generator Provably as Secure as Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Galil, Z., Haber, S., Yung, M.: Symmetric Public-Key Encryption. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 128–137. Springer, Heidelberg (1986)Google Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography I: Basic Tools. Cambridge University Press (2001)Google Scholar
  17. 17.
    Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge University Press (2004)Google Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity for All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3), 691–729 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Kharchenko, D.: Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 529–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Goppa, V.D.: A new class of linear error-correcting code. Probl. Peredach. Inform. 6, 24–30 (1970) (in Russian)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC, pp. 21–30 (2007)Google Scholar
  22. 22.
    Janwa, H., Moreno, O.: McEliece Public Key Cryptosystems Using Algebraic-Geometric Codes. Des. Codes Cryptography 8(3), 293–307 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Katz, J.: Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Kobara, K., Morozov, K., Overbeck, R.: Coding-Based Oblivious Transfer. In: MMICS, pp. 142–156 (2008)Google Scholar
  25. 25.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1992)Google Scholar
  26. 26.
    McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory. Deep Space Network Progress Rep. (1978)Google Scholar
  27. 27.
    Naor, M.: Bit Commitment Using Pseudo-Randomness (Extended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)Google Scholar
  28. 28.
    Niederreiter, H.: Knapsack-type Cryptosystems and Algebraic Coding Theory. Prob. of Control and Inf. Theory 15(2), 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Cryptography 49(1-3), 289–305 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Roth, R.: Introduction to coding theory. Cambridge University Press (2006)Google Scholar
  31. 31.
    Sendrier, N.: On the security of the McEliece public-key cryptosystem. In: Information, Coding and Mathematics – Proceedings of Workshop honoring Prof. Bob McEliece on his 60th Birthday, pp. 141–163. Kluwer (2002)Google Scholar
  32. 32.
    Shor, P.W.: Polynominal Time Algorithms for Discrete Logarithms and Factoring on a Quantum Computer. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, p. 289. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  33. 33.
    Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)Google Scholar
  34. 34.
    Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)Google Scholar
  35. 35.
    Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)CrossRefGoogle Scholar
  36. 36.
    Xagawa, K., Kawachi, A., Tanaka, K.: Proof of Plaintext Knowledge for the Regev Cryptosystems. Tech.rep. C-236, Tokyo Inst. of Technology (2007)Google Scholar
  37. 37.
    Xagawa, K., Tanaka, K.: Zero-Knowledge Protocols for NTRU: Application to Identification and Proof of Plaintext Knowledge. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 198–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kirill Morozov
    • 1
  • Tsuyoshi Takagi
    • 1
  1. 1.Institute of Mathematics for IndustryKyushu UniversityJapan

Personalised recommendations