Advanced Image Analysis for Automated Mapping of Landslide Surface Fissures

  • A. StumpfEmail author
  • U. Niethhammer
  • S. Rothmund
  • A. Mathieu
  • J. P. Malet
  • N. Kerle
  • M. Joswig


Surface fissures are potential indicators of slope instabilities and considerably influence infiltration characteristics of the soil. The increasing availability of unmanned aerial vehicles (UAVs) enables the observation of surface features at unprecedented detail and this study develops an image processing method combining Gaussian filters and object-oriented image analysis to map such features in very-high resolution (VHR) aerial images largely automatically. At three different time steps the results of the technique are compared with expert elaborated maps.


Line detection Gaussian filter Object-oriented image analysis Landslide surface fissures Unmanned aerial vehicle 



The work described in this paper was supported by the project SafeLand “Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies” under Grant Agreement No. 226479 in the 7th Framework Programme of the European Commission, the project SISCA ‘Système Intégré de Surveillance de Crises de Glissements de Terrain’ funded by the French Research Agency (ANR), and the project Grosshang “Coupling of Flow and Deformation Processes for Modeling the Movement of Natural Slopes” funded by the Deutsche Forschungsgemeinschaft (DFG). These supports are gratefully acknowledged.


  1. Abramson LW, Lee TS, Sharma S, Boyce GM (2001) Slope stability and stabilization methods. In: vol 2nd edn. Wiley, p 736Google Scholar
  2. Baum RL, Fleming RW (1991) Use of longitudinal strain in identifying driving and resisting elements of landslides. Geol Soc Am Bull 103:1121–1132CrossRefGoogle Scholar
  3. Bièvre G, Jongmans D, Winiarski T, Zumbo V (2011) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol Process. doi: n/a-n/a. doi: 10.1002/hyp.7986
  4. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imag 8(3):263–269CrossRefGoogle Scholar
  5. Chowdhury RN, Zhang S (1991) Tension cracks and slope failure. In: Paper presented at the international conference in slope stability engineering: developments and applications. Proceedings of an international conference, Isle of WightGoogle Scholar
  6. Corominas J, Moya J, Hürlimann M (2002) Landslide rainfall triggers in the Spanish eastern Pyrenees. In: Paper presented at the 4th EGS Plinius conference on Mediterranean storms, Mallorca, 4 OctGoogle Scholar
  7. Fleming RW, Baum RL, Giardino M (1999) Map and description of the active part of the slumgullion landslide, Hinsdale County. Geologic invstigations Series Map I-2672. U.S. Geologcial Survey, p 36Google Scholar
  8. Fleming RW, Johnson AM (1989) Structures associated with strike-slip faults that bound landslide elements. Eng Geol 27(1–4):39–114. doi: 10.1016/0013-7952(89)90031-8 CrossRefGoogle Scholar
  9. Grandjean G, Bitri A, Krzeminska DM (2011) Characterisation of a landslide fissure pattern by integrating seismic azimuth tomography and geotechnical testing. Hydrol Process. doi: n/a-n/a. doi: 10.1002/hyp.7993
  10. Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Ear Syst Sci 4:95–102CrossRefGoogle Scholar
  11. Hoek E, Bray JW (1981) Rock slope engineering. The Institution of Mining and Metallurgy, LondonGoogle Scholar
  12. Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag 19(3):203–210CrossRefGoogle Scholar
  13. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRefGoogle Scholar
  14. Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayão A (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 199–205Google Scholar
  15. Krauskopf KB, Feitler S, Griggs AB et al (1939) Structural features of a landslide near Gilroy, California. J Geol 47(6):630–648CrossRefGoogle Scholar
  16. Lindenmaier F, Zehe E, Dittfurth A, Ihringer J (2005) Process identification at a slow-moving landslide in the Vorarlberg Alps. Hydrol Process 19(8):1635–1651. doi: 10.1002/hyp.5592 CrossRefGoogle Scholar
  17. Malet J-P, Auzet A-V, Maquaire O, Ambroise B, Descroix L, Esteves M, Vandervaere J-P, Truchet E (2003) Soil surface characteristics influence on infiltration in black marls: application to the Super-Sauze earth flow (southern Alps, France). Earth Surf Process Land 28(5):547–564CrossRefGoogle Scholar
  18. Malet JP, van Asch TWJ, van Beek R, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazards Ear Syst Sci 5(1):71–85. doi: 10.5194/nhess-5-71-2005 CrossRefGoogle Scholar
  19. Matheson GD (1983) Rock stability assessment in preliminary site investigations – graphical methods. vol Report 1039. Transport and Road Research Laboratory, CrownthorneGoogle Scholar
  20. McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. In: Paper presented at the 21st Annual engineering geology and soils engineering symposium, Moscow, 5–6 AprilGoogle Scholar
  21. Meisina C (2006) Characterisation of weathered clayey soils responsible for shallow landslides. Nat Hazards Ear Syst Sci 6(5):825–838. doi: 10.5194/nhess-6-825-2006 CrossRefGoogle Scholar
  22. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imag 25(9):1200–1213CrossRefGoogle Scholar
  23. Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2011) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Engineering geology, Accepted Manuscript. doi: 10.1016/j.enggeo.2011.03.012 (in press)
  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Systs Man Cybernetics 9(1):62–66CrossRefGoogle Scholar
  25. Parise M (2003) Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat Hazards Ear Syst Sci 3(6):569–580. doi: 10.5194/nhess-3-569-2003 CrossRefGoogle Scholar
  26. Petley D, Dunning S, Rosser N, Kausar AB (2006) Incipient landslides in the Jhelum Valley, Pakistan following the 8th October 2005 earthquake. In: Paper presented at the disaster mitigation of debris flows, slope failures and landslides, TokyoGoogle Scholar
  27. Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London, UKCrossRefGoogle Scholar
  28. Selby MJ (1993) Hillslope materials and processes, vol Second. Oxford University Press, Oxford, UKGoogle Scholar
  29. Shreve RL (1966) Sherman Landslide, Alaska. Science 154(3757):1639–1643. doi: 10.1126/science.154.3757.1639 CrossRefGoogle Scholar
  30. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag 25(9):1214–1222CrossRefGoogle Scholar
  31. Sofka M, Stewart CV (2006) Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imag 25(12):1531–1546CrossRefGoogle Scholar
  32. Trimble (2011) Trimble eCognition® 8.64.0 Release NotesGoogle Scholar
  33. van Asch TWJ, van Beek LPH, Bogaard TA (2009) The diversity in hydrological triggering systems of landslides. In: The First Italian workshop on landslide, Napoli, 8–10 June 2009, pp 151–156Google Scholar
  34. van Beek L, van Asch T (1999) A combined conceptual model for the effects of fissure-induced infiltration on slope stability. In: Hergarten S, Neugebauer H (eds) Process modelling and landform evolution, vol 78. Lecture notes in Earth sciences. Springer, Berlin/Heidelberg, pp 147–167. doi: 10.1007/BFb0009724
  35. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445. doi: 10.1016/j.compbiomed.2010.02.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Stumpf
    • 1
    • 2
    Email author
  • U. Niethhammer
    • 3
  • S. Rothmund
    • 3
    • 4
  • A. Mathieu
    • 4
  • J. P. Malet
    • 4
  • N. Kerle
    • 1
  • M. Joswig
    • 3
  1. 1.Faculty of Geo-Information Science and Earth ObservationITC, University of TwenteEnschedeThe Netherlands
  2. 2.Laboratoire Image, Ville, EnvironnementCNRS ERL7230, University of StrasbourgStrasbourgFrance
  3. 3.Institut für Geophysik, University of StuttgartStuttgartGermany
  4. 4.Institut de Physique du Globe de StrasbourgCNRS UMR 7516, University of StrasbourgStrasbourgFrance

Personalised recommendations