Polyploidy in Legumes

  • Jeff J. Doyle


Legumes are the third largest family of flowering plants, with over 700 genera and more than 19,000 species. Genomic evidence has shown that a whole-genome duplication (WGD) occurred shortly after the origin of the family, in an ancestor that gave rise to the papilionoids, the clade that comprises 65 % of the genera and 71 % of the species, including nearly all of the economically important crop legumes. This polyploidy event may have been associated with the origin of nitrogen-fixing symbiosis (nodulation) in the papilionoids. Nodulation most likely evolved independently in other legumes outside the papilionoids, hence there appears to be no requirement for polyploidy in the evolution of this important symbiosis. More recent polyploidy, as inferred from chromosome counts, occurs in approximately a quarter of all legume genera for which data are available. In most cases, polyploidy is confined to individual genera, species within genera, or cytotypes within species. An exception is the core clade of the genistoid legumes, a major papilionoid group that includes lupines (Lupinus). This group is probably fundamentally polyploid and also has a propensity for further polyploidy and aneuploidy in many of its genera. The frequency of polyploidy varies considerably among clades of the family, being most common (outside the genistoids) in the largely temperate, herbaceous Hologalegina (including pea and clover), and low in woody tropical groups such as the caesalpinioids.


Chromosome Number Base Number Diploid Progenitor High Chromosome Number Polyploidy Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank many colleagues and lab members for discussions of polyploidy, and Jane Doyle for her support and encouragement. I also thank Jane Doyle, Sue Sherman-Broyles, Iben Sorensen, and Toby Pennington for critical reading of the manuscript, and Melissa Luckow for help with mimosoid systematics. I am grateful for many years of funding from the National Science Foundation for work on polyploidy, most recently grants DEB-0948800, IOS-0939423, IOS-0822258, and IOS-0744306. I thank Doug Soltis for helpful suggestions in review of the manuscript.


  1. Ahangarian S, Osaloo SK, Maassoumi AA (2007) Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iran J Bot 13:64–74Google Scholar
  2. Ainouche A, Bayer RJ, Misset M- (2004) Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Syst Evol 246:211–222CrossRefGoogle Scholar
  3. Artyukova EV, Kozyrenko MM, Kholina AB, Zhuravlev YN (2011) High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events. Genetica 139:221–232PubMedCrossRefGoogle Scholar
  4. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:296–313Google Scholar
  5. Bello MA, Bruneau A, Forest F, Hawkins JA (2009) Elusive relationships within order Fabales: phylogenetic analyses using matK and rbcL sequence data. Syst Bot 34:102–114CrossRefGoogle Scholar
  6. Bertioli D, Moretzsohn M, Madsen L, Sandal N, Leal-Bertioli S, Guimaraes P, Hougaard B, Fredslund J, Schauser L, Nielsen A, Sato S, Tabata S, Cannon S, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45PubMedCrossRefGoogle Scholar
  7. Bessega C, Vilardi JC, Saidman BO (2006) Genetic relationships among American species of the genus Prosopis (Mimosoideae, Leguminosae) inferred from ITS sequences: evidence for long-distance dispersal. J Biogeogr 33:1905–1915CrossRefGoogle Scholar
  8. Bingham ET (1972) Sexual poly ploidy in Medicago-Sativa-D. Genetics 71:S5Google Scholar
  9. Bisby FA (1981) Genisteae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 409–425Google Scholar
  10. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678PubMedCrossRefGoogle Scholar
  11. Boatwright JS, Van Wyk B- (2011) The systematic position of Sophora inhambanensis (Fabaceae: Sophoreae). S Afr J Bot 77:249–250CrossRefGoogle Scholar
  12. Boatwright JS, Savolainen V, Van Wyk B, Schutte-Vlok AL, Forest F, van der Bank M (2008) Systematic position of the anomalous genus Cadia and the phylogeny of the tribe Podalyrieae (Fabaceae). Syst Bot 33:133–147CrossRefGoogle Scholar
  13. Boff T, Schifino-Wittmann MT (2003) Segmental allopolyploidy and paleopolyploidy in species of Leucaena Benth: evidence from meiotic behaviour analysis. Hereditas (Lund) 138:27–35CrossRefGoogle Scholar
  14. Brown GK, Clowes C, Murphy DJ, Ladiges PY (2010) Phylogenetic analysis based on nuclear DNA and morphology defines a clade of eastern Australian species of Acacia s.s. (section Juliflorae): the ‘Acacia longifolia group’. Aust Syst Bot 23:162–172CrossRefGoogle Scholar
  15. Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany-Botanique 86:697–718CrossRefGoogle Scholar
  16. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119PubMedCrossRefGoogle Scholar
  17. Calderini O, Mariani A (1997) Increasing 2n gamete production in diploid alfalfa by cycles of phenotypic recurrent selection. Euphytica 93:113–118CrossRefGoogle Scholar
  18. Cannon SB, Ilut D, Farmer AD, Maki SL, May GD, Singer SR, Doyle JJ (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS ONE 5:e11630PubMedCrossRefGoogle Scholar
  19. Catalano SA, Vilardi JC, Tosto D, Saidman BO (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linn Soc 93:621–640CrossRefGoogle Scholar
  20. Chandler GT, Bayer RJ, Crisp MD (2001) A molecular phylogeny of the endemic Australian genus Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. Am J Bot 88:1675–1687PubMedCrossRefGoogle Scholar
  21. Choi B, Kim J (1997) ITS sequences and speciation on far eastern Indigofera (Leguminosae). J Plant Res 110:339–346CrossRefGoogle Scholar
  22. Chooi WY (1971) Variation in nuclear DNA content in the genus Vicia-D. Genetics 68:195–211PubMedGoogle Scholar
  23. Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546PubMedCrossRefGoogle Scholar
  24. Conterato IF, Schifino-Wittmann MT (2006) New chromosome numbers, meiotic behaviour and pollen fertility in American taxa of Lupinus (Leguminosae): contributions to taxonomic and evolutionary studies. Bot J Linn Soc 150:229–240CrossRefGoogle Scholar
  25. Cowan RS, Polhill RM (1981) Amherstieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 135–142Google Scholar
  26. Cubas P, Pardo C, Tahiri H (2002) Molecular approach to the phylogeny and systematics of cytisus (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst Evol 233:223–242CrossRefGoogle Scholar
  27. Cusma-Velari T, Feoli-Chiapella L (2009) The so-called primitive genera of Genisteae (Fabaceae): systematic and phyletic considerations based on karyological data. Bot J Linn Soc 160:232–248CrossRefGoogle Scholar
  28. Dahmer N, Simon MF, Schifino-Wittmann MT, Hughes CE, Sfoggia Miotto ST, Giuliani JC (2011) Chromosome numbers in the genus Mimosa L.: cytotaxonomic and evolutionary implications. Plant Syst Evol 291:211–220CrossRefGoogle Scholar
  29. Degtjareva GV, Kramina TE, Sokoloff DD, Samigullin TH, Valiejo-Roman CM, Antonov AS (2006) Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology. Can J Bot 84:813–830CrossRefGoogle Scholar
  30. Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Molec Plant Microbe Interact 24:1289–1295CrossRefGoogle Scholar
  31. Doyle JL, Rauscher JT, Brown AHD (2004) Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine …. New Phytologist)Google Scholar
  32. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85PubMedCrossRefGoogle Scholar
  33. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461PubMedCrossRefGoogle Scholar
  34. Doyle JJ, Doyle JL, Harbison C (2003) Chloroplast-expressed glutamine synthetase in Glycine and related Leguminosae: phylogeny, gene duplication, and ancient polyploidy. Syst Bot 28:567–577Google Scholar
  35. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol (Rockville) 131:900–910CrossRefGoogle Scholar
  36. Drummond CS (2008) Diversification of Lupinus (Leguminosae) in the western new world: derived evolution of perennial life history and colonization of montane habitats. Mol Phylogenet Evol 48:408–421PubMedCrossRefGoogle Scholar
  37. Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460 PubMedCrossRefGoogle Scholar
  38. Egan AN, Doyle J (2010) A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). Syst Biol 59:534–547PubMedCrossRefGoogle Scholar
  39. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium––Leguminosae). Mol Phylogenet Evol 39:688–705PubMedCrossRefGoogle Scholar
  40. Endo Y, Choi B, Ohashi H, Delgado-Salinas A (2008) Phylogenetic relationships of New World Vicia (Leguminosae) inferred from nrDNA internal transcribed spacer sequences and floral characters. Syst Bot 33:356–363CrossRefGoogle Scholar
  41. Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742PubMedCrossRefGoogle Scholar
  42. Frahm-Leliveld JA (1966) Cytotaxonomic notes on the genera Indigofera L. and Cyamopsis DC. [Leguminosae]. Genetica 37:403–426CrossRefGoogle Scholar
  43. Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814PubMedCrossRefGoogle Scholar
  44. Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Travnicek P (2011) Invasiveness in introduced Australian Acacias: the role of species traits and geneome size. Divers Distrib 17:884–897CrossRefGoogle Scholar
  45. Gauthier P, Lumaret R, Bedecarrats A (1998a) Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity 80:683–693CrossRefGoogle Scholar
  46. Gauthier P, Lumaret R, Bedecarrats A (1998b) Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/L. corniculatus L.). II. Insights from RFLP of chloroplast DNA. Heredity 80:694–701CrossRefGoogle Scholar
  47. Gill LS, Husaini (1986) Cytological observations in Leguminosae from southern Nigeria. Willdenowia 15:521–527Google Scholar
  48. Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174PubMedCrossRefGoogle Scholar
  49. Gohil RN, Ashraf M (2008) Cytological parameters viz a viz probable modes of evolution in Astragalus L. Proc Nat Acad Sci India Sect B-Biol Sci 78:281–287Google Scholar
  50. Goldblatt P (1989) Miscellaneous chromosome counts in Asteraceae Bignoniaceae Proteaceae and Fabaceae. Ann Mo Bot Gard 76:1186–1188CrossRefGoogle Scholar
  51. Goldblatt P (1981) Cytology and the phylogeny of leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 2. Royal Botanic Gardens, Kew, pp 427–464Google Scholar
  52. Govindarajulu R, Hughes CE, Bailey D (2011a) Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae-Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation. Am J Bot 98:2049–2063PubMedCrossRefGoogle Scholar
  53. Govindarajulu R, Hughes CE, Alexander P, Bailey D (2011b) The complex dynamics of ancient and recent polyploidy in Leucaena (Leguminosae). Am J Bot 98:2064–2076PubMedCrossRefGoogle Scholar
  54. Grant WF, Small E (1996) The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Can J Bot 74:975–989CrossRefGoogle Scholar
  55. Gutierrez JF, Vaquero F, Vences FJ (1994) Allopolyploid vs. autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73:29–40CrossRefGoogle Scholar
  56. Hanson L (1995) Some new chromosome counts in the genus Inga (Leguminosae: Mimosoideae). Kew Bull 50:801–804CrossRefGoogle Scholar
  57. Havananda T, Brummer EC, Maureira-Butler IJ, Doyle JJ (2010) Relationships among diploid members of the Medicago sativa (Fabaceae) species complex based on chloroplast and mitochondrial DNA sequences. Syst Bot 35:140–150CrossRefGoogle Scholar
  58. Havananda T, Brummer EC, Doyle JJ (2011) Complex patterns of autopolyploid evolution in alfalfa and allies (Medicago sativa: Leguminosae). Am J Bot 98:1633-1646PubMedCrossRefGoogle Scholar
  59. Hejazi H, Mohsen S, Nasab MZ (2010) Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 63:18–31Google Scholar
  60. Hughes CE, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A 103:10334–10339PubMedCrossRefGoogle Scholar
  61. Hughes CE, Govindarajulu R, Robertson A, Filer DL, Harris SA, Bailey CD (2007) Serendipitous backyard hybridization and the origin of crops. Proc Natl Acad Sci U S A 104:14389–14394PubMedCrossRefGoogle Scholar
  62. Hughes CE, Bailey CD, Harris SA (2002) Divergent and reticulate species relationships in Leucaena (Fabaceae) inferred from multiple data sources: insights into polyploid origins and nrDNA polymorphism. Am J Bot 89:1057–1073PubMedCrossRefGoogle Scholar
  63. Hughes CE, Bailey CD, Krosnick S, Luckow MA (2003) Relationships among genera of the informal Dichrostachys and Leucaena groups (Mimosoideae) inferred from nuclear ribosomal ITS sequences. In: Klitgaard B, Bruneau A (eds) Advances in legume systematics, Part 1.0. Royal Botanic Gardens, Kew, pp 221–238Google Scholar
  64. Hulina N (2010) “Planta hortifuga” in flora of the continental part of Croatia. Agriculturae Conspectus Scientificus 75:57–65Google Scholar
  65. Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-Seq in plant species. Am J Bot 99:383–396PubMedCrossRefGoogle Scholar
  66. Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, del Campo SM, Metcalf M, Nguyen A, O’Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol (Rockville) 148:1740–1759CrossRefGoogle Scholar
  67. Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon A, Weissenbach J, Quetier F, Wincker P, French-Italian Public (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature (London) 449:463CrossRefGoogle Scholar
  68. Jenczewski E, Prosperi J, Ronfort J (1999) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot 86:677–687PubMedCrossRefGoogle Scholar
  69. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100PubMedCrossRefGoogle Scholar
  70. Joly S, Bruneau A (2004) Evolution of triploidy in Apios americana (Leguminosae) revealed by genealogical analysis of the histone H3-D gene. Evolution 58:284–295PubMedGoogle Scholar
  71. Jorgensen JL, Stehlik I, Brochmann C, Conti E (2003) Implications of ITS sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complexes in Alaska. Am J Bot 90:1470–1480PubMedCrossRefGoogle Scholar
  72. Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) rbcL and legume phylogeny, with particular reference to phaseoleae, millettieae, and allies. Syst Bot 26:515–536Google Scholar
  73. Kloda JM, Dean PDG, Maddren C, MacDonald DW, Mayes S (2008) Using principle component analysis to compare genetic diversity across polyploidy levels within plant complexes: an example from British Restharrows (Ononis spinosa and Ononis repens). Heredity 100:253–260PubMedCrossRefGoogle Scholar
  74. Kumar PS, Hymowitz T (1989) Where are the diploid 2n equals 2x equals 20 genome donors of glycine willd. Leguminosae Papilionoideae. Euphytica 40:221–226Google Scholar
  75. Kumari S, Bir SS (1990) Karyomorphological evolution in Papilionaceae. J Cytol Genet 25:173–219Google Scholar
  76. Kupicha FK (1981) Vicieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 377–381Google Scholar
  77. Lackey JA (1981) Phaseoleae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 301–328Google Scholar
  78. Lavia GI, Ortiz MA, Robledo G, Fernandez A, Seijo G (2011) Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Ann Bot (London) 108:103–111CrossRefGoogle Scholar
  79. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594PubMedCrossRefGoogle Scholar
  80. Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533PubMedCrossRefGoogle Scholar
  81. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  82. Lewis GP, Schrire B, MacKinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, KewGoogle Scholar
  83. Luckow M, Fortunato RH, Sede S, Livshultz T (2005) The phylogenetic affinities of two mysterious monotypic mimosoids from southern South America. Syst Bot 30:585–602CrossRefGoogle Scholar
  84. Luckow M, Miller JT, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. In: Klitgaard B, Bruneau A (eds) Advances in legume systematics, Part 1.0. Royal Botanic Gardens, Kew, pp 197–220Google Scholar
  85. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  86. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science (Washington DC) 333:1257CrossRefGoogle Scholar
  87. McMahon MM (2005) Phylogenetic relationships and floral evolution in the papilionoid legume clade Amorpheae. Brittonia 57:397–411CrossRefGoogle Scholar
  88. Morales M, Wulff AF, Fortunato RH, Poggio L (2010) Chromosome and morphological studies in the Mimosa debilis complex (Mimosoideae, Leguminosae) from southern South America. Aust J Bot 58:12–22CrossRefGoogle Scholar
  89. Murphy DJ, Brown GK, Miller JT, Ladiges PY (2010) Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon 59:7–19Google Scholar
  90. Neumann P, Koblizkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056PubMedCrossRefGoogle Scholar
  91. Ohashi H, Polhill RM, Schubert BG (1981) Desmodieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 292–300Google Scholar
  92. Orthia LA, Cook LG, Crisp MD (2005) Generic delimitation and phylogenetic uncertainty: an example from a group that has undergone an explosive radiation. Aust Syst Bot 18:41–47CrossRefGoogle Scholar
  93. Ortiz MA, Guillermo Seijo J, Fernandez A, Lavia GI (2011) Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A. nitida species (section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production. Plant Syst Evol 292:73–83CrossRefGoogle Scholar
  94. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana RID E-2139-2011 RID C-1418-2008. Science 327:92–94PubMedCrossRefGoogle Scholar
  95. Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403CrossRefGoogle Scholar
  96. Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99: 1108-1115CrossRefGoogle Scholar
  97. Pardo C, Cubas P, Tahiri H (2004) Molecular phylogeny and systematics of Genista (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst Evol 244:93–119CrossRefGoogle Scholar
  98. Pennington, RT, Klitgaard BB, Ireland H, Lavin M (2000) New insights into floral evolution of basal Papilionoideae from molecular phylogenies. In: Herendeen PS Bruneau A (eds.) Advances in legume systematics Part 9. Royal Botanic Gardens, Kew p 233–248 Google Scholar
  99. Pennington, RT, Lavin M, Ireland H, Klitgaard BB, Preston J, Hu J-M (2001) Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast trnL intron. Syst Bot 26:537–556Google Scholar
  100. Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 54:441–454PubMedCrossRefGoogle Scholar
  101. Polhill RM (1981a) Dipteryxeae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 231–232Google Scholar
  102. Polhill RM (1981b) Indigofereae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 289–291Google Scholar
  103. Polhill RM, Raven PH (1981) Advances in legume systematics, Part 1. Royal Botanic Gardens, KewGoogle Scholar
  104. Polhill RM, Sousa M (1981) Robinieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, Part 1. Royal Botanic Gardens, Kew, pp 283–288Google Scholar
  105. Reddy VRK, Revathi R (1993) Chemotaxonomic studies in the genus Indigofera Linn. J Econ Taxon Bot 17:115–120Google Scholar
  106. Rosato M, Castro M, Rossello JA (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot (London) 102:15–22CrossRefGoogle Scholar
  107. Rossello JA, Castro M (2008) Karyological evolution of the angiosperm endemic flora of the Balearic Islands. Taxon 57:259–273Google Scholar
  108. Sakiroglu M, Doyle JJ, Brummer EC (2010) Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor Appl Genet 121:403–415PubMedCrossRefGoogle Scholar
  109. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239PubMedCrossRefGoogle Scholar
  110. Schleueter J, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876CrossRefGoogle Scholar
  111. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  112. Schrire BD, Lavin M, Barker NP, Forest F (2009) Phylogeny of the Tribe Indigofereae (Leguminosae-Papilionoideae): geographically structured more in succulent-rich and temperate settings than in grass-rich environments. Am J Bot 96:816–843, 844–852Google Scholar
  113. Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971PubMedCrossRefGoogle Scholar
  114. Seijo G, Fernandez A (2001) Chromosome numbers of some southernmost species of Mimosa L. (Leguminosae). Cytologia 66:19–23CrossRefGoogle Scholar
  115. Sen O, Bhattacharya S (1988) Cytomixis in vigna-glabrescens Ttk-1 wild. Cytologia 53:437–440CrossRefGoogle Scholar
  116. Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338PubMedGoogle Scholar
  117. Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109PubMedCrossRefGoogle Scholar
  118. Simon MF, Grether R, de Queiroz LP, Saerkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98:1201–1221PubMedCrossRefGoogle Scholar
  119. Singer SR, Maki SL, Farmer AD, Ilut D, May GD, Cannon SB, Doyle JJ (2009) Venturing beyond beans and peas: what can we learn from chamaecrista? Plant Physiol 151:1041–1047PubMedCrossRefGoogle Scholar
  120. Sinou C, Forest F, Lewis GP, Bruneau A (2009) The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL-trnF region. Botany-Botanique 87:947–960CrossRefGoogle Scholar
  121. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403Google Scholar
  122. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedCrossRefGoogle Scholar
  123. Spellenberg R (1981) Poly ploidy in Dalea-Formosa Fabaceae on the Chihuahuan desert. Brittonia 33:309–324CrossRefGoogle Scholar
  124. Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, AmesCrossRefGoogle Scholar
  125. Srivastav PK, Raina SN (1986) Cytogenetics of Tephrosia Vi. Meiotic systems in some taxa. Cytologia 51:359–374CrossRefGoogle Scholar
  126. Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF (2010) Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid Trnk/matk and nuclear Ga3ox1 sequences. Am J Bot 97:1142–1155PubMedCrossRefGoogle Scholar
  127. Stefanovic S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128CrossRefGoogle Scholar
  128. Straub SCK, Doyle JJ (2009) Conservation genetics of Amorpha georgiana (Fabaceae), an endangered legume of the Southeastern United States. Mol Ecol 18:4349–4365PubMedCrossRefGoogle Scholar
  129. Straub SCK, Pfeil BE, Doyle JJ (2006) Testing the polyploid past of soybean using a low-copy nuclear gene––is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol Phylogenet Evol 39:580–584PubMedCrossRefGoogle Scholar
  130. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45PubMedCrossRefGoogle Scholar
  131. Thulin M, Lavin M (2001) Phylogeny and biogeography of the Ormocarpum group (Fabaceae): a new genus Zygocarpum from the horn of Africa region. Syst Bot 26:299–317Google Scholar
  132. Tondini F, Tavoletti S, Mariani A, Veronesi F (1993) A statistical approach to estimate the frequency of n, 2n and 4n pollen grains in diploid alfalfa. Euphytica 69:109–114CrossRefGoogle Scholar
  133. Torres DC, Matos Santos Lima JP, Fernandes AG, Nunes EP, Grangeiro TB (2011) Phylogenetic relationships within chamaecrista sect. Xerocalyx (Leguminosae, Caesalpinioideae) inferred from the cpDNA trnE- trnT intergenic spacer and nrDNA ITS sequences. Genet Mol Biol 34:244–251PubMedCrossRefGoogle Scholar
  134. Travnicek P, Eliasova A, Suda J (2010) The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia (Prague) 82:149–163Google Scholar
  135. Turini FG, Braeuchler C, Heubl G (2010) Phylogenetic relationships and evolution of morphological characters in Ononis L. (Fabaceae). Taxon 59:1077–1090Google Scholar
  136. van Wyk BE, Schutte AL (1988) Chromosome numbers in Lotononis and Buchenroedera (Fabaceae-Crotalarieae). Ann Missouri Bot Gard 75:1603–1607CrossRefGoogle Scholar
  137. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2011) Draft genome sequence of Pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech. doi: 10.1038/nbt.2022 Google Scholar
  138. Veronesi F, Mariani A, Bingham ET (1986) Unreduced gametes in diploid medicago and their importance in alfalfa breeding. Theor Appl Genet 72:37–41CrossRefGoogle Scholar
  139. Wagstaff S, Heenan P, Sanderson M (1999) Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 86:1346–1356PubMedCrossRefGoogle Scholar
  140. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Nat Acad Sci 106:3853–3858PubMedCrossRefGoogle Scholar
  141. Wilbur RL (1975) A revision of the North American genus Amorpha Leguminosae Psoraleae. Rhodora 77:337–409Google Scholar
  142. Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Legumenosae) based on analyses of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862PubMedCrossRefGoogle Scholar
  143. Wojciechowski M (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396CrossRefGoogle Scholar
  144. Young N, Debellé F, Oldroyd G, Geurts R, Cannon SB et al (2011) The medicago genome provides insight into the evolution of rhizobial symbioses. Nature. doi: 10.1038/nature10625 Google Scholar
  145. Zhang M, Fritsch PW, Cruz BC (2009) Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnS-trnG, and ITS. Mol Phylogenet Evol 50:547–559PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations