Advertisement

Genomic Plasticity in Polyploid Wheat

  • Moshe Feldman
  • Avraham Levy
  • Boulos Chalhoub
  • Khalil Kashkush
Chapter

Abstract

The importance of hybridization and polyploidization in wheat speciation has been recognized for close to a century (Sakamura 1918; Kihara 1919, 1924, 1954; Percival 1921; Sax 1927). Following these pioneering works, it quickly became apparent that polyploid wheats are not the sum of their constituent genomes. This is not unexpected because the nascent hybrids/polyploids are equipped with a complex set of regulatory elements and of copy number variation that originate from two or more divergent genomes and that generate novel types of interactions and dosage effects. Moreover, they have to adjust at the cytological level, at the level of gene expression, and at the protein level. They also have to maintain genome stability through the regulation of meiotic pairing and recombination, the orchestration of cell division, and the silencing of transposons. The recent studies described here provide an impressive account with regard to the extent and the rapid time course at which a new genetic variant was established upon hybridization and polyploidization. We describe here the current knowledge on the changes that occurred in the wheat genome upon allopolyploidization, starting from the early evolutionary and cytological studies to the recent genomic analyses.

Keywords

Hexaploid Wheat Diploid Progenitor CCGG Site Wheat Group Allopolyploid Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Beery Yaakov for his critical reading of the manuscript and Hakan Ozkan for providing part of the seed material for the project. This work was supported by grants from the Israel Science Foundation (grant # 142/08 to K.K, and grant # 616/09 to A.A.L).

References

  1. Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. Bull Plant Ind 180:1–63Google Scholar
  2. Aaronsohn A, Schweinfurth G (1906) Die auffindung des wilden emmers (Triticum dicoccum) in Nordpalästina. Altneuland Monatsschrift für die irtschaft. Erschliessung Palästinas 7(8):213–220Google Scholar
  3. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100(8):4649–4654PubMedCrossRefGoogle Scholar
  4. Aghaee-Sarbarzeh M, Dhaliwal HS, Harjit-Singh (2001) Suppression of rust resistance genes from distantly related species in Triticum durum-Aegilops amphiploids. In: Johnson R, Yahyaoui A, Wellings C, Saidi A, Ketata H (eds) Meeting the challenge of yellow rust in cereal crops. Proceedings of the First Regional Conference on Yellow Rust in the Central and West Asia and North Africa Region, Karaj, Iran. pp 8–14Google Scholar
  5. Akhunova AR, Matniyazov RT, Liang H, Akhunov ED (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC genomics 11:505PubMedCrossRefGoogle Scholar
  6. Avivi L (1976) The effect of genes controlling different degrees of homoeologous pairing on quadrivalent frequency in induced autotetraploid lines of Triticum longissimum. Can J Genet Cytol 18:357–364Google Scholar
  7. Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe BR, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76CrossRefGoogle Scholar
  8. Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43(6):1021–1026PubMedGoogle Scholar
  9. Belzile F, Beaulieu J, Jean M (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281(4):421–435PubMedCrossRefGoogle Scholar
  10. Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS ONE 3:1402–1413CrossRefGoogle Scholar
  11. Blakeslee AF (1937) Redoublement du nombre de chromosomes chez les plantes par traitement chimique. Compt Rend Acad Sci Paris 205:476–479Google Scholar
  12. Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47(6):897–906PubMedCrossRefGoogle Scholar
  13. Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1984) Does DNA content change in the course of triticale breeding. Cereal Res Commun 12(1–2):99–100Google Scholar
  14. Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1988) Regularities of genome formation and organization in cereals. I. DNA quantitative changes in the process of allopolyploidization. Genetika 24:89–97Google Scholar
  15. Chague V, Just J, Mestiri I, Balzergue S, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B (2010) Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New phytol 187(4):1181–1194PubMedCrossRefGoogle Scholar
  16. Chaudhary B et al (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 182:503–517PubMedCrossRefGoogle Scholar
  17. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17(4):1033–1045Google Scholar
  18. Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of Triticum urattu. Genet Res 27:69–76Google Scholar
  19. Dvorak J (1976) The relationship between the genome of Triticum urattu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377Google Scholar
  20. Dvorak J (2009) Triticeae genome structure and evolution. In: Feuiller C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin. pp 685–711Google Scholar
  21. Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51(8):616–627PubMedCrossRefGoogle Scholar
  22. Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2010) Genome size in diploids, allopolyploids, and autopolyploids of mediterranean triticeae. doi: 10.1155/2010/341380
  23. Fahima T, Cheng JP, Peng JH, Nevo E, Korol A (2006) Asymmetry distribution of disease resistance genes and domestication synrome QTLs in tetraploid wheat genome. 8th International Congress of Plant Molecular Biology, Adelaide, AustraliaGoogle Scholar
  24. Feldman M (1965a) Chromosome pairing between differential genomes in hybrids of tetraploid Aegilops species. Evolution 19:563–568CrossRefGoogle Scholar
  25. Feldman M (1965b) Fertility of interspecific F1 hybrids and hybrid derivatives involving tetraploid species of Aegilops Section Pleionathera. Evolution 19:556–562Google Scholar
  26. Feldman M (1965c) Further evidence for natural hybridization between tetraploid tetraploid species of Aegilops Section Pleionathera. Evolution 19:162–174CrossRefGoogle Scholar
  27. Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The wheat book. Lavoisier Tech and Doc, Paris, pp 1–56Google Scholar
  28. Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109(1–3):250–258PubMedCrossRefGoogle Scholar
  29. Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36(9):511–518PubMedCrossRefGoogle Scholar
  30. Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants - wheat as a model. J. Exp. Bot. (in press)Google Scholar
  31. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147(3):1381–1387PubMedGoogle Scholar
  32. Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific, London, pp 184–192Google Scholar
  33. Flagel LE, Chen LP, Chaudhary B, Wendel JF (2009) Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100(4):487–490PubMedCrossRefGoogle Scholar
  34. Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186(1):184–193PubMedCrossRefGoogle Scholar
  35. Galili G, Feldman M (1984) Inter-genomic suppression of endosperm- protein genes in common wheat. Can J Genet Cytol 26:651–656Google Scholar
  36. Galili G, Levy AA, Feldman M (1986) Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proc Natl Acad Sci U S A 83:6524–6528PubMedCrossRefGoogle Scholar
  37. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439(7077):749–752PubMedCrossRefGoogle Scholar
  38. Gupta PK, Kulwal PL, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109(1–3):315–327PubMedCrossRefGoogle Scholar
  39. Han FP, Fedak G, Guo WL, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGcIR-1a) in newly synthesized wheat allopolyploids. Genetics 170(3):1239–1245PubMedCrossRefGoogle Scholar
  40. Han FP, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46(4):716–723PubMedCrossRefGoogle Scholar
  41. Hart GH (1983a) Genetic and evolution of mulilocus isozymes in hexaploid wheat. In: Ratazzi MC, Scandalios JG, Whitt GS (eds) Isozymes: current topics in biological and medical research, vol 10., Genetics and Evolution Alan R. Liss., Inc., New York, pp 365–380Google Scholar
  42. Hart GH (1983b) Hexaploid wheat (Triticum aestivum L. em Thell.). In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, Part. B, Elsvier Science Publishers B.V., Amsterdam, pp 35–56Google Scholar
  43. Hart GH (1987) Genetic and biochemical studies of enzymes. In: Heyne EG (ed) Wheat and wheat improvement, Second Ed., Amer. Soc. Agronomy, Madison, Wisconsin, USAGoogle Scholar
  44. He P, Friebe BR, Gill BS, Zhou JM (2003) Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 52(2):401–414PubMedCrossRefGoogle Scholar
  45. Houchins K, ODell M, Flavell RB, Gustafson JP (1997) Cytosine methylation and nucleolar dominance in cereal hybrids. Mol Gen Genet 255(3):294–301PubMedCrossRefGoogle Scholar
  46. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 99(12):8133–8138PubMedCrossRefGoogle Scholar
  47. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160(4):1651–1659PubMedGoogle Scholar
  48. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet 33(1):102–106PubMedCrossRefGoogle Scholar
  49. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons, and the impact of readout transcription from LTRs on expression of adjacent rice genes. Genetics 177:1975–1985PubMedCrossRefGoogle Scholar
  50. Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hand polyploidization results in deregulation of small RNAs. Genetics 188:263–272PubMedCrossRefGoogle Scholar
  51. Kerber ER, Green GJ (1980) Suppression of stem rust resistance in hexaploid wheat cv Canthach by chromosome 7DL. Can J Bot 58:1347–1350CrossRefGoogle Scholar
  52. Kihara H (1919) Über cytologische studien bei einigen getreidearten. I. Species-bastarde des weizens und weizenroggen-bastarde. Bot Mag 33:17–38Google Scholar
  53. Kihara H (1924) Cytologische und genetische studien bei wichtigen getreidearten mit besonderer rücksicht ouf das verhalten der chromosomen und die sterilitat in den bastarden. Mem Cell Sci, Kyoto Imp University, B1: 1–200Google Scholar
  54. Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14Google Scholar
  55. Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19:336–357CrossRefGoogle Scholar
  56. Kihara H, Lilienfeld F (1949) A new synthesized 6x-wheat. In: Larsson GBaR (ed) Proceedings of Eighth International Congress of Genetics, Stockholm, Sweden, 1949. Hereditas (Suppl), pp 307–319Google Scholar
  57. Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement. American Society of Agronomy, Madison, pp 154–164Google Scholar
  58. Kislev ME (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Isr J Bot 28:95–107Google Scholar
  59. Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186(3):U801–U889CrossRefGoogle Scholar
  60. Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82(4):607–613CrossRefGoogle Scholar
  61. Liu B, Segal G, Vega JM, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11(5):959–965CrossRefGoogle Scholar
  62. Liu B, Vega JM, Feldman M (1998a) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41(4):535–542PubMedGoogle Scholar
  63. Liu B, Vega JM, Segal G, Abbo S, Rodova H, Feldman M (1998b) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41(2):272–277Google Scholar
  64. Lucas H, Moore G, Murphy G, Flavell RB (1992) Inverted repeats in the long-terminal repeats of the wheat retrotransposon wis 2–1A. Mol Bio Evol 9(4):716–728Google Scholar
  65. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140(1):336–348PubMedCrossRefGoogle Scholar
  66. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  67. Ma XF, Fang P, Gustafson JP (2004) Polyploidization-induced genome variation in triticale. Genome 47(5):839–848PubMedCrossRefGoogle Scholar
  68. Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109(1–3):236–249PubMedCrossRefGoogle Scholar
  69. Ma XF, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49(8):950–958PubMedCrossRefGoogle Scholar
  70. Maan SS (1977) Fertility of amphiploids in Triticinae. J Heredity 68:87–94Google Scholar
  71. Mac Key J (1954) Mutation breeding in polyploid cereals. Acta Agriculturae Scandinavica 4:549–557CrossRefGoogle Scholar
  72. Mac Key J (1958) Mutagenic response in Triticum at different lrvels of ploidy. In: Jenkins CB (ed) Proceedings 1stGoogle Scholar
  73. Mac Key J (1966) Species relationship in Triticum. Proceedings 2nd International Wheat Genetics Symposium, Lund 1963, Hereditas Suppl. 2, pp 237–276Google Scholar
  74. Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129(2):733–746PubMedCrossRefGoogle Scholar
  75. Madlung A, Tyagi AP, Watson B, Jiang HM, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41(2):221–230PubMedCrossRefGoogle Scholar
  76. Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii and T-turgidum and T-aestivum. Theor Appl Genet 98(5):744–750CrossRefGoogle Scholar
  77. McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Records Genet Soc Amer 13:26–27Google Scholar
  78. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Heredity 37(81–89):107–116Google Scholar
  79. Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New phytol 186(1):86–101PubMedCrossRefGoogle Scholar
  80. Mitra R, Bhatia C (1971) Isoenzymes and polyploidy. 1. Qualitative and quantitative isoenzyme studies in the Triticinae. Genet Res Camb 18:57–69CrossRefGoogle Scholar
  81. Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin-I T, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Genet Genomics 276(3):304–312PubMedCrossRefGoogle Scholar
  82. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Madison, U.S.A., pp 19–87Google Scholar
  83. Nigumann P, Redik K, Matlik K, Speek M (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79(5):628–634PubMedCrossRefGoogle Scholar
  84. Ohno S (1970) Evolution by gene duplication. Springer, BerlinGoogle Scholar
  85. Okamoto M, Inomata N (1974) Possibility of 5B-like effect in diploid species. Wheat Inform Serv 38:15–16Google Scholar
  86. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-Induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747PubMedGoogle Scholar
  87. Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94(3):260–264PubMedCrossRefGoogle Scholar
  88. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186(1):37–45PubMedCrossRefGoogle Scholar
  89. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184(4):1003–1015PubMedCrossRefGoogle Scholar
  90. Peng I, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003a) Genomic distribution of domestication QTLs in wild emmer wheat, Triticum dicoccoides. In Proceedings 10th International Wheat Genetics Symposium, Paestum, Italy, pp 34–37Google Scholar
  91. Peng JH, Ronin Y, Fahima T, Roder MS, Li YC, Nevo E, Korol A (2003b) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A 100(5):2489–2494PubMedCrossRefGoogle Scholar
  92. Percival J (1921) The wheat plant. E.P. Dutton and Company, New York, pp 1–463Google Scholar
  93. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186(1):135–147PubMedCrossRefGoogle Scholar
  94. Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16(11):495–500PubMedCrossRefGoogle Scholar
  95. Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837PubMedCrossRefGoogle Scholar
  96. Puig M, Caceres M, Ruiz A (2004) Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. P Natl Acad Sci U S A 101(24):9013–9018CrossRefGoogle Scholar
  97. Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181(3):1147–1157PubMedCrossRefGoogle Scholar
  98. Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. Bmc Biol 7Google Scholar
  99. Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Gen 274(2):119–130CrossRefGoogle Scholar
  100. Sakamura T (1918) Kurze mitteilung über die chromosomenzahalen und die verwandtschaftsverhältnisse der Triticum Arten. Bot Mag 32(1918):151–154Google Scholar
  101. Salina EA, Numerova OM, Ozkan H, Feldman M (2004) Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome 47(5):860–867PubMedCrossRefGoogle Scholar
  102. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14(4):1163–1175PubMedCrossRefGoogle Scholar
  103. Sax K (1927) Chromosome behavior in Triticum hybrids, Verhandlungen des V Int. Kongresses für Vererbungswissenchaft, Berlin, 2:1267–1284Google Scholar
  104. Schulz A (1913) Die geschichte der kultivierten getreide. Nebert, HalleGoogle Scholar
  105. Sears ER (1972) The nature of mutation in hexaploid wheat. Symp Biol Hung 12:73–82Google Scholar
  106. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51PubMedCrossRefGoogle Scholar
  107. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759PubMedGoogle Scholar
  108. Stebbins GLJ (1980) Polyploidy in plants: unsolved problems and prospect, in polyploidy—biological relevance. In: Lewis WH (ed) Plenum Press, New YorkGoogle Scholar
  109. Stebbins GLJ (1971) Chromosomal evolution in higher plants. Addison-Wesley, New YorkGoogle Scholar
  110. Stephens SG (1951) Possible significance of duplication in evolution. Adv Genet 4:247–265PubMedCrossRefGoogle Scholar
  111. Thompson DA, Desai MM, Murray AW (2006) Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol: CB 16(16):1581–1590PubMedCrossRefGoogle Scholar
  112. Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324(5927):659–662PubMedCrossRefGoogle Scholar
  113. Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  114. Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24(8):390–397PubMedCrossRefGoogle Scholar
  115. Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125(3):1283–1292PubMedCrossRefGoogle Scholar
  116. Von Tschermak E, Bleier H (1926) Über fruchtbare Aegilops-weizenbastarde, der deutsch. Bot Ges 44:110–132Google Scholar
  117. Waines JG (1976) A model for the origin of diploidizing mechanisms in polyploid species. Amer Natur 110:415–430CrossRefGoogle Scholar
  118. Wang JB, Xu YH, Zhong L, Wu XM, Fang XP (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229(3):471–483PubMedCrossRefGoogle Scholar
  119. Weissmann S, Feldman M, Gressel J (2005) Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol Biol Evol 22:2055–2062PubMedCrossRefGoogle Scholar
  120. Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Simkova H, Kubalakova M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dolezel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23(5):1706–1718PubMedCrossRefGoogle Scholar
  121. Yaakov B, Kashkush K (2011a) Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid. Genome 54(1):42–49PubMedCrossRefGoogle Scholar
  122. Yaakov B, Kashkush K (2011b) Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int J Plant Genomics. doi: 10.1155/2011/569826 PubMedGoogle Scholar
  123. Zhang ZC, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill BS, Rasmussen JB, Barbe V, Faris JD, Chalhoub B (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. P Natl Acad Sci U S A 108(46):18737–18742CrossRefGoogle Scholar
  124. Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F, Liu B (2011) Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics. doi: 10.1534/genetics.111.127688 Google Scholar
  125. Zohary D, Feldman M (1962) Hybridization between amphiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Moshe Feldman
    • 1
  • Avraham Levy
    • 1
  • Boulos Chalhoub
    • 2
  • Khalil Kashkush
    • 3
  1. 1.Plant Sciences DepartmentThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.UMR INRA 1165—CNRS 8114—UEVE, Organization and Evolution of Plant Genomes (OEPG)Unité de Recherche En Génomique Végétale (URGV)Evry CedexFrance
  3. 3.Department of Life SciencesBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations