Ancient and Recent Polyploidy in Monocots

  • Andrew H. Paterson
  • Xiyin Wang
  • Jingping Li
  • Haibao Tang


At least two whole-genome duplications (WGD) have profoundly influenced the evolution of most, if not all, grass (Poaceae) genomes, with the most recent of these predating the divergence of these lineages by 20 million or more years. Taxa within each major lineage of Poaceae (e.g., Panicoideae, Ehrhartoideae, Pooideae) have independently experienced additional polyploidizations that have been of central importance to the evolution and productivity of some of our most important crop plants [for example, sugarcane (Saccharum spp.), and durum and bread wheat (Triticum spp.)]. Following polyploidy, adaptation to the duplicated state is evident at the levels of transmission genetics, chromosome structure, and gene repertoire. While most duplicated chromosomal regions re-establish largely independent evolution within a few million years, 70-million-year-old duplicated chromosome segments in one unusual region of the rice genome and its orthologs in other grasses have continued to exhibit concerted evolution more recently than the divergence of rice subspecies japonica and indica an estimated 400,000 years ago.


Gene Loss Duplicate Gene Synteny Block Ancestral Karyotype Grass Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402CrossRefPubMedGoogle Scholar
  2. Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226CrossRefPubMedGoogle Scholar
  3. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691CrossRefPubMedGoogle Scholar
  4. Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a dobzhansky-muller-type incompatibility syndrome in Plants. PLOS Biology 5:1962-1972 Google Scholar
  5. Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, Exum HE, Goff VH, Herrick KL, Steele CLJ, Karunakaran S, Lafayette GK, Lemke C, Marler BS, Masters SL, McMillan JM, Nelson LK, Newsome GA, Nwakanma CC, Odeh RN, Phelps CA, Rarick EA, Rogers CJ, Ryan SP, Slaughter KA, Soderlund CA, Tang HB, Wing RA, Paterson AH (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Nat Acad Sci USA 102:13206–13211CrossRefPubMedGoogle Scholar
  6. Bremer G (1923) A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5:273–326CrossRefGoogle Scholar
  7. Bremer G (1961) Problems in breeding and cytology of sugar cane. 4. Origin of increase of chromosome number in species hybrids of Saccharum. Euphytica 10:325–342CrossRefGoogle Scholar
  8. Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering crucial functions by paleologous duplicated genes may impart cyclicality to angiosperm genome duplication. Proc Nat Acad Sci USA 103:2730–2735CrossRefPubMedGoogle Scholar
  9. Charlesworth B (2002) The evolution of chromosomal sex determination. Novartis Found Symp 244:207–219 (discussion 220–204, 253–207)CrossRefPubMedGoogle Scholar
  10. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed Rflp map of Sorghum-bicolor X S-propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933CrossRefGoogle Scholar
  11. Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genetics 100:190–198Google Scholar
  12. Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258CrossRefPubMedGoogle Scholar
  13. Freeling M (2001) Grasses as a single genetic system: reassessment 2001. Plant Physiol 125:1191–1197CrossRefPubMedGoogle Scholar
  14. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100Google Scholar
  15. Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–19CrossRefGoogle Scholar
  16. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014CrossRefGoogle Scholar
  17. Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:10CrossRefGoogle Scholar
  18. International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436:793–800Google Scholar
  19. Jaillon O, Aury JM et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  20. Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585CrossRefPubMedGoogle Scholar
  21. Jeswiet J (1929) The development of selection and breeding of the sugarcane in Java. Int Soc Sugar Cane Technol 3:44–57Google Scholar
  22. Kim C, Tang H, Paterson AH (2009) Duplication and divergence of grass genomes: integrating the chloridoids. Trop Plant Biol 2:51–62CrossRefGoogle Scholar
  23. Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726CrossRefGoogle Scholar
  24. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science (New York) 286:964–967CrossRefGoogle Scholar
  25. Lawrence WJC (1931) The secondary association of chromosomes. Cytologia 2:352–384CrossRefGoogle Scholar
  26. Lawson Handley LJ, Hammond RL, Emaresi G, Reber A, Perrin N (2006) Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96:298–303CrossRefPubMedGoogle Scholar
  27. Liu H, Sachidanandam R, Stein L (2001) Comparative genomics between rice and Arabidopsis shows scant collinearity in gene order. Genome Res 11:2020–2026CrossRefPubMedGoogle Scholar
  28. Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH (2007) Leveraging the rice genome sequence for comparative genomics in monocots. Theor Appl Genetics 115:237–243 Google Scholar
  29. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  30. Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605CrossRefGoogle Scholar
  31. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Nat Acad Sci USA 102:5454–5459CrossRefPubMedGoogle Scholar
  32. Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell 23:1249–1263Google Scholar
  33. Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130CrossRefPubMedGoogle Scholar
  34. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  35. Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084CrossRefPubMedGoogle Scholar
  36. Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002a) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803CrossRefPubMedGoogle Scholar
  37. Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345CrossRefPubMedGoogle Scholar
  38. Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557Google Scholar
  39. Nagamura Y, Inoue T, Antonio B, Shimano T, Kajiya H, Shomura A, Lin S, Kuboki Y, Harushima Y, Kurata N, Minobe Y, Yano M, Sasaki T (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376Google Scholar
  40. Paterson AH (2008) Paleopolyploidy and its impact on the structure and function of modern plant genomes. Genome Dyn 4:1–12CrossRefPubMedGoogle Scholar
  41. Paterson AH, Lan TH, Reischmann KP, Chang C, Lin YR, Liu SC, Burow MD, Kowalski SP, Katsar CS, DelMonte TA, Feldmann KA, Schertz KF, Wendel JF (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380–382CrossRefPubMedGoogle Scholar
  42. Paterson A, Bowers J, Peterson D, Estill J, Chapman B (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644–650CrossRefPubMedGoogle Scholar
  43. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Nat Acad Sci USA 101:9903–9908CrossRefPubMedGoogle Scholar
  44. Paterson AH, Chapman BA, Kissinger J, Bowers JE, Feltus FA, Estill J, Marler BS (2006) Convergent retention or loss of gene/domain families following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces, and Tetraodon. Trends Genet 22:597–602CrossRefPubMedGoogle Scholar
  45. Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131CrossRefPubMedGoogle Scholar
  46. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009b) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556Google Scholar
  47. Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. W. H. Freeman, New YorkGoogle Scholar
  48. Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous protochromosomes reveals faster evolution in plants than in animals. Proceedings of the National academy of sciences of the United States of America 106:14908–14913 Google Scholar
  49. Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24CrossRefPubMedGoogle Scholar
  50. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345CrossRefPubMedGoogle Scholar
  51. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115Google Scholar
  52. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci USA 108:4069–4074CrossRefPubMedGoogle Scholar
  53. Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464CrossRefPubMedGoogle Scholar
  54. Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav M, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwad K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35Google Scholar
  55. Soderstrom TR, Hilu KW, Campbell CS, Barkworth MA (1987) Grass systematics and evolution. Smithsonian Institution Press, WashingtonGoogle Scholar
  56. Soltis DE, Smith S, Cellinese N, Refulio-Rodriquez NF, Olmstead R, Crawley S, Black C, Diouf D, Hilu KW, Latvis M, Wurdack K, Xi Z, Davis C, Donoghue M, Soltis PS (2011) Inferring angiosperm phylogeny: a 17-gene analysis. Am J Bot 98:704–730CrossRefPubMedGoogle Scholar
  57. Spangler R (2003) Taxonomy of Sarga, Sorghum, and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299CrossRefGoogle Scholar
  58. Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281CrossRefGoogle Scholar
  59. Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954CrossRefPubMedGoogle Scholar
  60. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and colinearity in plant genomes. Science 320:486–488 Google Scholar
  61. Tang HB, Bowers JE, Wang XY, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Nat Acad Sci USA 107:472–477CrossRefPubMedGoogle Scholar
  62. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  63. Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946CrossRefPubMedGoogle Scholar
  64. Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752–763CrossRefPubMedGoogle Scholar
  65. Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202CrossRefPubMedGoogle Scholar
  66. Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397CrossRefPubMedGoogle Scholar
  67. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946CrossRefPubMedGoogle Scholar
  68. Wang XY, Shi XL, Li Z, Zhu QH, Kong L, Tang W, Ge S, Luo JC (2006) Statistical inference of chromosomal homology based on gene colinearity and applications to arabidopsis and rice. BMC Bioinformatics 7:447Google Scholar
  69. Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763CrossRefPubMedGoogle Scholar
  70. Wang X, Tang H, Paterson AH (2011) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23:27–37CrossRefPubMedGoogle Scholar
  71. Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526CrossRefGoogle Scholar
  72. Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Simkova H, Kubalakova M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dolezel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. The Plant Cell 23:1706–1718Google Scholar
  73. Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409CrossRefPubMedGoogle Scholar
  74. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Nat Acad Sci USA 108:7908–7913CrossRefPubMedGoogle Scholar
  75. Yin T, Difazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430 Google Scholar
  76. Yu J, Wang J, Lin W, Li SG, Li H, Zhou J, Ni PX, Dong W, Hu SN, Zeng CQ, Zhang JG, Zhang Y, Li RQ, Xu ZY, Li ST, Li XR, Zheng HK, Cong LJ, Lin L, Yin JN, Geng JN, Li GY, Shi JP, Liu J, Lv H, Li J, Deng YJ, Ran LH, Shi XL, Wang XY, Wu QF, Li CF, Ren XY, Wang JQ, Wang XL, Li DW, Liu DY, Zhang XW, Ji ZD, Zhao WM, Sun YQ, Zhang ZP, Bao JY, Han YJ, Dong LL, Ji J, Chen P, Wu SM, Liu JS, Xiao Y, Bu DB, Tan JL, Yang L, Ye C, Zhang JF, Xu JY, Zhou Y, Yu YP, Zhang B, Zhuang SL, Wei HB, Liu B, Lei M, Yu H, Li YZ, Xu H, Wei SL, He XM, Fang LJ, Zhang ZJ, Zhang YZ, Huang XG, Su ZX, Tong W, Li JH, Tong ZZ, Li SL, Ye J, Wang LS, Fang L, Lei TT, Chen C, Chen H, Xu Z, Li HH, Huang HY, Zhang F, Xu HY, Li N, Zhao CF, Dong LJ, Huang YQ, Li L, Xi Y, Qi QH, Li WJ, Hu W, Zhang YL, Tian XJ, Jiao YZ, Liang XH, Jin JA, Gao L, Zheng WM, Hao BL, Liu SQ, Wang W, Yuan LP, Cao ML, McDermott J, Samudrala R, Wong GKS, Yang HM (2005) The genomes of Oryza sativa: a history of duplications. Plos Biology 3:266–281 Google Scholar
  77. Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ (2004) Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathol. 53:191–196Google Scholar
  78. Zhang Y, Xu GH, Guo XY, Fan LJ (2005) Two ancient rounds of polyploidy in rice genome. J Zhejiang Univ Sci B 6:87–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrew H. Paterson
    • 1
  • Xiyin Wang
    • 1
    • 2
  • Jingping Li
    • 1
  • Haibao Tang
    • 1
    • 3
  1. 1.Plant Genome Mapping LaboratoryUniversity of GeorgiaAthensUSA
  2. 2.Center for Genomics and Computational BiologyHebei United UniversityTangshanPeople’s Republic of China
  3. 3.J. Craig Venter InstituteRockvilleUSA

Personalised recommendations