Advertisement

Origins of Novel Phenotypic Variation in Polyploids

  • Patrick Finigan
  • Milos Tanurdzic
  • Robert A. Martienssen
Chapter

Abstract

Polyploid species represent a special type of organism in nature, one that can survive and compete with three or more full sets of homologous chromosomes. While less common in the animal and fungal kingdoms, polyploid species are highly prevalent in the plant kingdom. Indeed, most agricultural crops are polyploids, typically because polyploidy confers greater robustness and therefore higher yields. Among many examples of novel phenotypic variation exhibited by polyploids are the production of larger fruits, reduced tillering, delays in the reproductive transition, and even the creation of visually stunning flower pigmentation patterns coveted by gardeners. The source of this novel variation in polyploids is still largely unclear. However, multiple cellular mechanisms have been proposed, with some supporting evidence, to explain novel variation. We review some of these mechanisms here.

Keywords

Megaspore Mother Cell Unreduced Gamete Diploid Progenitor POLYCOMB Repressive Complex Complex Nucleolar Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahloowalia B, Garber F (1961) The genus Collinsia. XIII. Cytogenetic studies of interspecific hybrids involving species with pediceled flowers. Bot Gaz 122:219CrossRefGoogle Scholar
  2. Akhunova A, Matniyazov R, Liang H, Akhunov E (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 11(1):505PubMedCrossRefGoogle Scholar
  3. Albertin W, Balliau T, Brabant P, Chevre A-M, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid Nonstochastic modifications of Gene products in newly synthesized Brassica napus Allotetraploids. Genetics 173(2):1101–1113. doi:  10.1534/genetics.106.057554 PubMedCrossRefGoogle Scholar
  4. Bertrand D, Gagnon Y, Blanchette M, El-Mabrouk N (2010) Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. Paper presented at the Proceedings of the 10th international conference on algorithms in bioinformatics, Liverpool, UKGoogle Scholar
  5. Bingham E (1979) Maximizing heterozygosity in autopolyploids. Basic Life Sci 13:471–489PubMedGoogle Scholar
  6. Birchler JA, Bhadra U, Bhadra MP, Auger DL (2001) Dosage-dependent Gene regulation in multicellular Eukaryotes: implications for dosage compensation, Aneuploid syndromes, and quantitative traits. Dev Biology 234(2):275–288. doi:  10.1006/dbio.2001.0262 CrossRefGoogle Scholar
  7. Bretagnolle F, Thompson J (1995) Tansley review no. 78. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of Autopolyploid plants. New Phytol 129:1CrossRefGoogle Scholar
  8. Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic Allotetraploids. Heredity 103 (1):73–81. doi: http://www.nature.com/hdy/journal/v103/n1/suppinfo/hdy200924s1.html Google Scholar
  9. Buggs Richard JA, Zhang L, Miles N, Tate Jennifer A, Gao L, Wei W, Schnable Patrick S, Barbazuk WB, Soltis Pamela S, Soltis Douglas E (2011) Transcriptomic shock generates evolutionary novelty in a newly formed. Natural allopolyploid plant. Curr Biol 21(7):551–556. doi:  10.1016/j.cub.2011.02.016 PubMedCrossRefGoogle Scholar
  10. Calarco JP, Martienssen RA (2011) Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev 21(2):134–139. doi:  10.1016/j.gde.2011.01.014 PubMedCrossRefGoogle Scholar
  11. Chagué V, Just J, Mestiri I, Balzergue S, Tanguy A-M, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B (2010) Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 187(4):1181–1194. doi:  10.1111/j.1469-8137.2010.03339.x PubMedCrossRefGoogle Scholar
  12. Chang P, Dilkes B, McMahon M, Comai L, Nuzhdin S (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11(12):R125PubMedCrossRefGoogle Scholar
  13. Chaudhary B, Flagel L, Stupar R, Udall J, Verma N, Springer N, Wendel J (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517PubMedCrossRefGoogle Scholar
  14. Chen M, Ha M, Lackey E, Wang J, Chen Z (2008) RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis Allopolyploids. Genetics 178:1845–1858PubMedCrossRefGoogle Scholar
  15. Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Nat Acad Sci 109(4):1176–1181. doi:  10.1073/pnas.1112041109 PubMedCrossRefGoogle Scholar
  16. Church SA, Spaulding EJ (2009) Gene expression in a wild Autopolyploid sunflower series. J Hered 100(4):491–495. doi:  10.1093/jhered/esp008 PubMedCrossRefGoogle Scholar
  17. Clausen J, Keck D, Hiesey W (1945) Experimental studies on the nature of species. II. Plant evolution through Amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Inst Wash Publ 564Google Scholar
  18. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid Gene silencing in newly formed Arabidopsis Allotetraploids. Plant Cell 12(9):1551–1568. doi:  10.1105/tpc.12.9.1551 PubMedGoogle Scholar
  19. Darlington CD (1963) Chromosome botany, and the origins of cultivated plants. Allen and Unwin, LondonGoogle Scholar
  20. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the Ancestral Vertebrate. PLoS Biol 3(10):e314PubMedCrossRefGoogle Scholar
  21. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42(1):443–461. doi:  10.1146/annurev.genet.42.110807.091524 PubMedCrossRefGoogle Scholar
  22. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833):1862–1866. doi:  10.1126/science.1143986 PubMedCrossRefGoogle Scholar
  23. Durán-Figueroa N, Vielle-Calzada J-P (2010) ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. Plant Signal Behav 5(11):1476–1479PubMedCrossRefGoogle Scholar
  24. Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20(10):1283–1293. doi:  10.1101/gad.1417706 PubMedCrossRefGoogle Scholar
  25. Eigsti OJ (1957) Induced Polyploidy. Am J Bot 44(3):272–279CrossRefGoogle Scholar
  26. Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109(1–3):250–258PubMedCrossRefGoogle Scholar
  27. Finigan P, Martienssen RA (2008) Nucleolar dominance and DNA methylation directed by small interfering RNA. Mol Cell 32(6):753–754PubMedCrossRefGoogle Scholar
  28. Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16PubMedCrossRefGoogle Scholar
  29. Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186(1):184–193. doi:  10.1111/j.1469-8137.2009.03107.x PubMedCrossRefGoogle Scholar
  30. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in Resynthesized Brassica napus and their effect on Gene expression and Phenotype. Plant Cell Online 19(11):3403–3417. doi:  10.1105/tpc.107.054346 CrossRefGoogle Scholar
  31. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Nat Acad Sci U S A 94(13):6809–6814CrossRefGoogle Scholar
  32. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  33. Guo M, Birchler JA (1994) Trans-acting dosage effects on the expression of model Gene systems in Maize Aneuploids. Science 266(5193):1999–2002. doi:  10.1126/science.266.5193.1999 PubMedCrossRefGoogle Scholar
  34. Guo M, Davis D, Birchler JA (1996) Dosage effects on Gene expression in a Maize Ploidy series. Genetics 142(4):1349–1355PubMedGoogle Scholar
  35. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang X-J, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Nat Acad Sci 106(42):17835–17840. doi:  10.1073/pnas.0907003106 PubMedCrossRefGoogle Scholar
  36. Harlan J, deWet J (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41 (4):361–390. doi:  10.1007/bf02860830 Google Scholar
  37. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in senecio is ameliorated by genome duplication. Curr Biol 16(16):1652–1659. doi:  10.1016/j.cub.2006.06.071 PubMedCrossRefGoogle Scholar
  38. Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol: CB 18(10):R435–R444PubMedCrossRefGoogle Scholar
  39. Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana Triploid response. Genetics 170(4):1979–1988. doi:  10.1534/genetics.104.037788 PubMedCrossRefGoogle Scholar
  40. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473 (7345):97–100. doi: http://www.nature.com/nature/journal/v473/n7345/abs/10.1038-nature09916-unlocked.html#supplementary-information Google Scholar
  41. Jørgensen C (1928) The experimental formation of heteroploid plants in the genus Solanum. J Genet 11:133CrossRefGoogle Scholar
  42. Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of Gene silencing during interspecies hybridization. Curr Biol 16(13):1322–1328. doi:  10.1016/j.cub.2006.05.045 PubMedCrossRefGoogle Scholar
  43. Kashkush K, Feldman M, Levy A (2002) Gene loss, silencing and activation in a newly synthesized wheat Allotetraploid. Genetics 160:1651–1659PubMedGoogle Scholar
  44. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces Cerevisiae. Nature 428 (6983):617–624. doi: http://www.nature.com/nature/journal/v428/n6983/suppinfo/nature02424_S1.html Google Scholar
  45. Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and Polyploidization results in deregulation of small RNAs. Genetics 188(2):263–272. doi:  10.1534/genetics.111.128348 PubMedCrossRefGoogle Scholar
  46. Kerber E (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:53–255CrossRefGoogle Scholar
  47. Kihara H, Ono T (1926) Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Z Zellforsch Mikr Anat 4:475CrossRefGoogle Scholar
  48. Kliebenstein DJ, West MAL, van Leeuwen H, Kim K, Doerge RW, Michelmore RW, St. Clair DA (2006) Genomic survey of Gene expression diversity in Arabidopsis thaliana. Genetics 172(2):1179–1189. doi:  101534/genetics.105.049353 PubMedCrossRefGoogle Scholar
  49. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144(4):1903–1910PubMedGoogle Scholar
  50. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320(5875):481–483. doi:  10.1126/science.1153585 PubMedCrossRefGoogle Scholar
  51. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122(1):1–25CrossRefGoogle Scholar
  52. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  53. Lexer C, Welch ME, Raymond O, Rieseberg LH (2003) The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat. Evolution 57(9):1989–2000. doi:  10.1111/j.0014-3820.2003.tb00379.x PubMedGoogle Scholar
  54. Li X, Guo W, Wang B, Li X, Chen H, Wei L, Wang Y, Wu J, Long H (2010) Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica Alboglabra Bailey. BMC Plant Biol 10(1):207PubMedCrossRefGoogle Scholar
  55. Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29(3):365–379. doi:  10.1016/s1055-7903(03)00213-6 PubMedCrossRefGoogle Scholar
  56. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly Resynthesized Brassica napus allopolyploids. Plant Physiol 140(1):336–348. doi:  10.1104/pp.105.066308 PubMedCrossRefGoogle Scholar
  57. Lumaret R (1988) Adaptive strategies and ploidy levels. Acta Oecol Oecol Plant 9:83Google Scholar
  58. Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA Methylation and Phenotypic and transcriptional changes in synthetic Arabidopsis Allotetraploids. Plant Physiol 129(2):733–746. doi:  10.1104/pp.003095 PubMedCrossRefGoogle Scholar
  59. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in Eukaryotes. Proc Nat Acad Sci U S A 102(15):5454–5459. doi:  10.1073/pnas.0501102102 CrossRefGoogle Scholar
  60. Martienssen RA (2010) Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol 186(1):46–53. doi:  10.1111/j.1469-8137.2010.03193.x PubMedCrossRefGoogle Scholar
  61. Matzke MA, Scheid OM, Matzke AJM (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. BioEssays 21(9):761–767. doi:  10.1002/(sici)1521-1878(199909)21:9<761:aid-bies7>3.0.co;2-c PubMedCrossRefGoogle Scholar
  62. McStay B (2006) Nucleolar dominance: a model for rRNA gene silencing. Genes Dev 20(10):1207–1214. doi:  10.1101/gad.1436906 PubMedCrossRefGoogle Scholar
  63. Meins F, Thomas M (2003) Meiotic transmission of epigenetic changes in the cell-division factor requirement of plant cells. Development 130(25):6201–6208. doi:  10.1242/dev.00856 PubMedCrossRefGoogle Scholar
  64. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11(6):699–704. doi:  10.1016/s0955-0674(99)00039-3 PubMedCrossRefGoogle Scholar
  65. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945. doi:  10.1002/bies.20293 PubMedCrossRefGoogle Scholar
  66. Mohan Jain S (2001) Tissue culture-derived variation in crop improvement. Euphytica 118(2):153–166. doi:  10.1023/a:1004124519479 CrossRefGoogle Scholar
  67. Müntzing A (1936) The evolutionary significance of Autopolyploidy. Hereditas 21(2–3):363–378. doi:  10.1111/j.1601-5223.1936.tb03204.x Google Scholar
  68. Müntzing A (1937) The effects of chromosomal variation in Dactylis. Hereditas 23:113CrossRefGoogle Scholar
  69. Newton W, Pellew C (1929) Primula kewensis and its derivatives. J Genet 20:405CrossRefGoogle Scholar
  70. Ng DWK, Zhang C, Miller M, Shen Z, Briggs SP, Chen ZJ (2011) Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity. doi: http://www.nature.com/hdy/journal/vaop/ncurrent/suppinfo/hdy201192s1.html
  71. Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and Allopolyploids. Nature 457 (7227):327–331. doi: http://www.nature.com/nature/journal/v457/n7227/suppinfo/nature07523_S1.html Google Scholar
  72. Noggle G (1946) The physiology of polyploidy in plants. Lloydia 9:153Google Scholar
  73. Ohno S (1970) Evolutoin by gene duplication. Springer, BerlinGoogle Scholar
  74. Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada J-P (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464 (7288):628–632. doi: http://www.nature.com/nature/journal/v464/n7288/suppinfo/nature08828_S1.html Google Scholar
  75. Osborn T, Pires J, Birchler J, Auger D, Chen Z, Lee H, Comai L, Madlung A, Doerge R, Colot V, Martienssen R (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147PubMedCrossRefGoogle Scholar
  76. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M-A, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184(4):1003–1015. doi:  10.1111/j.1469-8137.2009.03029.x PubMedCrossRefGoogle Scholar
  77. Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Nat Acad Sci U S A 91(12):5222–5226CrossRefGoogle Scholar
  78. Pignatta D, Dilkes BP, Yoo S-Y, Henry IM, Madlung A, Doerge RW, Jeffrey Chen Z, Comai L (2010) Differential sensitivity of the Arabidopsis thaliana transcriptome and enhancers to the effects of genome doubling. New Phytol 186(1):194–206. doi:  10.1111/j.1469-8137.2010.03198.x PubMedCrossRefGoogle Scholar
  79. Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82(4):675–688. doi:  10.1111/j.1095-8312.2004.00350.x CrossRefGoogle Scholar
  80. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Nat Acad Sci U S A 101(52):18240–18245. doi:  10.1073/pnas.0407258102 CrossRefGoogle Scholar
  81. Preuss S, Pikaard CS (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochimica et Biophysica Acta (BBA)—Gene structure and expression 1769 (5–6):383–392. doi:  10.1016/j.bbaexp.2007.02.005
  82. Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32(5):673–684. doi:  10.1016/j.molcel.2008.11.009 PubMedCrossRefGoogle Scholar
  83. Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill B (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157PubMedCrossRefGoogle Scholar
  84. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29(1):467–501. doi:  10.1146/annurev.ecolsys.29.1.467 CrossRefGoogle Scholar
  85. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33(1):589–639. doi:  10.1146/annurev.ecolsys.33.010802.150437 CrossRefGoogle Scholar
  86. Randolph L (1941) An evaluation of induced polyploidy as a method of breeding crop plants. Am Nat 75:347CrossRefGoogle Scholar
  87. Rapp R, Udall J, Wendel J (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18PubMedCrossRefGoogle Scholar
  88. Riddle N, Jiang H, An L, Doerge R, Birchler J (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120(2):341–353. doi:  10.1007/s00122-009-1113-3 PubMedCrossRefGoogle Scholar
  89. Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH (2003) Partial diploidization of meiosis in Autotetraploid Arabidopsis thaliana. Genetics 165(3):1533–1540PubMedGoogle Scholar
  90. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci 108(10):4069–4074. doi:  10.1073/pnas.1101368108 PubMedCrossRefGoogle Scholar
  91. Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and flowering locus c in determining variation in flowering time of Arabidopsis. Plant Physiol 138(2):1163–1173. doi:  10.1104/pp.105.061309 PubMedCrossRefGoogle Scholar
  92. Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144(1):329–338PubMedGoogle Scholar
  93. Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296(5566):285–289. doi:  10.1126/science.296.5566.285 PubMedCrossRefGoogle Scholar
  94. Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D (2011) Production of viable gametes without Meiosis in Maize deficient for an ARGONAUTE protein. Plant Cell Online 23(2):443–458. doi:  10.1105/tpc.110.079020 CrossRefGoogle Scholar
  95. Skalinska M (1946) Polyploidy in valeriana officinalis Linn. In relation to its ecology and distribution. J Linn Soc London, Bot 53:159CrossRefGoogle Scholar
  96. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136 (3):461–472. doi:  S0092-8674(08)01644-9 [pii] 10.1016/j.cell.2008.12.038Google Scholar
  97. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348. doi:  10.3732/ajb.0800079 PubMedCrossRefGoogle Scholar
  98. Soltis DE, Rieseberg LH (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Am J Bot 73(2):310–318CrossRefGoogle Scholar
  99. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14(9):348–352. doi:  10.1016/s0169-5347(99)01638-9 PubMedCrossRefGoogle Scholar
  100. Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56(1):13–30Google Scholar
  101. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60(1):561–588. doi:  10.1146/annurev.arplant.043008.092039 PubMedCrossRefGoogle Scholar
  102. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad Sci 92(17):7719–7723PubMedCrossRefGoogle Scholar
  103. Song K, Tang K, Osborn T (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 86:811CrossRefGoogle Scholar
  104. Stebbins G (1947) Types of polyploids: their classification and significance. Adv Genet 1:403PubMedCrossRefGoogle Scholar
  105. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  106. Stebbins GL (1971) Chromosomal evolution in higher plants [by] G. Ledyard Stebbins. Contemporary biology, vol Accessed from http://nla.gov.au/nla.cat-vn1859678. Edward Arnold, London
  107. Storchova Z, Breneman A, Cande J, Dunn J, Burbank K, O’Toole E, Pellman D (2006) Genome-wide genetic analysis of polyploidy in yeast. Nature 443 (7111):541–547. doi: http://www.nature.com/nature/journal/v443/n7111/suppinfo/nature05178_S1.html Google Scholar
  108. Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang J (2007) Phenotypic and Transcriptomic changes associated with Potato Autopolyploidization. Genetics 176(4):2055–2067. doi:  10.1534/genetics.107.074286 PubMedCrossRefGoogle Scholar
  109. Tanurdzic M, Vaughn MW, Jiang H, Lee T-J, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6(12):e302. doi:  10.1371/journal.pbio.0060302 CrossRefGoogle Scholar
  110. Tate JA, Symonds VV, Doust AN, Buggs RJA, Mavrodiev E, Koh J, Soltis PS, Soltis DE (2009) Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 50 + years after Ownbey’s discovery. Am J Bot 96:979–988PubMedCrossRefGoogle Scholar
  111. Tate JA, Ni Z, Scheen A-C, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173(3):1599–1611. doi:  10.1534/genetics.106.057646 PubMedCrossRefGoogle Scholar
  112. Valvekens D, Montagu MV, Lijsebettens MV (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Nat Acad Sci U S A 85(15):5536–5540CrossRefGoogle Scholar
  113. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732PubMedCrossRefGoogle Scholar
  114. Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5 (7):e174. doi:  06-PLBI-RA-2115 [pii] 10.1371/journal.pbio.0050174
  115. Walia H, Josefsson C, Dilkes B, Kirkbride R, Harada J, Comai L (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol: CB 19(13):1128–1132PubMedCrossRefGoogle Scholar
  116. Wang H, Chai Y, Chu X, Zhao Y, Wu Y, Zhao J, Ngezahayo F, Xu C, Liu B (2009) Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability. BMC Plant Biol 9(1):63PubMedCrossRefGoogle Scholar
  117. Wang J, Tian L, Lee H-S, Chen ZJ (2006a) Nonadditive regulation of FRI and FLC Loci mediates flowering-time variation in Arabidopsis Allopolyploids. Genetics 173(2):965–974. doi:  10.1534/genetics.106.056580 PubMedCrossRefGoogle Scholar
  118. Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006b) Genomewide nonadditive Gene regulation in Arabidopsis Allotetraploids. Genetics 172(1):507–517. doi:  10.1534/genetics.105.047894 PubMedCrossRefGoogle Scholar
  119. Wang J, Tian L, Madlung A, Lee H-S, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and Epigenetic changes of Gene expression in Arabidopsis Polyploids. Genetics 167(4):1961–1973. doi:  10.1534/genetics.104.027896 PubMedCrossRefGoogle Scholar
  120. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42(1):225–249. doi:  10.1023/a:1006392424384 PubMedCrossRefGoogle Scholar
  121. Winge O (1917) The chromosomes: their number and general importance. C.R. Trav Lab, CarlsbergGoogle Scholar
  122. Winge Ö (1932) On the origin of constant species-hybrids. Sven Bot Tidskr 26:107Google Scholar
  123. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486. doi:  10.1126/science.286.5439.481 PubMedCrossRefGoogle Scholar
  124. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Nat Acad Sci 108(19):7908–7913. doi:  10.1073/pnas.1014138108 PubMedCrossRefGoogle Scholar
  125. Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229(3):471–483. doi:  10.1007/s00425-008-0844-8 PubMedCrossRefGoogle Scholar
  126. Yaakov B, Kashkush K (2011) Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid. Genome 54(1):42–49. doi:  10.1139/g10-091 PubMedCrossRefGoogle Scholar
  127. Yao H, Kato A, Mooney B, Birchler J (2011) Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43. Plant Mol Biol 75(3):237–251. doi:  10.1007/s11103-010-9722-4 PubMedCrossRefGoogle Scholar
  128. Yu Z, Haberer G, Matthes M, Rattei T, Mayer KFX, Gierl A, Torres-Ruiz RA (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Nat Acad Sci 107(41):17809–17814. doi:  10.1073/pnas.1000852107 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrick Finigan
    • 1
  • Milos Tanurdzic
    • 1
  • Robert A. Martienssen
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations