Jeans, Genes, and Genomes: Cotton as a Model for Studying Polyploidy

  • Jonathan F. Wendel
  • Lex E. Flagel
  • Keith L. Adams


We present an overview of the cotton genus (Gossypium) as a model for the study of polyploidy. A synopsis of the origin and evolution of polyploid cotton is provided, offering an organismal framework and phylogenetic perspective that is critical for understanding modes and mechanisms of gene and genome evolution. Sequence data from thousands of genes implicate a mid-Pleistocene (1–2 mya) origin of polyploid cotton, following trans-oceanic dispersal of an Old World, A-genome diploid to the New World and subsequent hybridization with an indigenous D-genome diploid. This chance biological reunion, occurring after 5–10 million years of diploid evolution in isolation, has led to an array of molecular genetic interactions in the newly formed allopolyploid lineage, including nonreciprocal homoeologous recombination and perhaps other forms of interlocus concerted evolution, differential rates of genomic evolution, intergenomic spread of transposable elements, and myriad forms of alterations in duplicate expression relative to that experienced in the ancestral diploids. The latter include developmental, organ-, tissue-, and cell-specific biases in homoeologous gene expression, which can be sensitive to various forms of environmental perturbation and stress. The allopolyploid Gossypium transcriptome is exceptionally dynamic, with homoeolog expression ratios being subject to change even during development of the single-celled cotton fiber. Expression evolution is temporally partitioned into changes accompanying genome merger (hybridization) at the diploid level, polyploidization, and longer term evolution at the allopolyploid level. Evidence indicates that allopolyploidy facilitated colonization of a new ecological niche for the genus and led to an enhanced capacity for developing agronomically superior cotton varieties. The myriad mechanisms that underlie genomic and regulatory evolution are suggested to have contributed to both ecological success and agronomic potential.


Cotton Fiber Development Allopolyploid Species Polyploid Formation Synthetic Allopolyploid Natural Allopolyploid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the Wendel lab has largely been funded by the NSF Plant Genome Program, with additional support from other NSF programs, the USDA NRI, and Cotton Incorporated. Research in the Adams lab has been supported by the Natural Science and Engineering Research Council of Canada and by the USDA NRI program. We gratefully acknowledge all of these sources of support.


  1. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Nat Acad Sci USA 100:4649–4654CrossRefPubMedGoogle Scholar
  2. Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226CrossRefPubMedGoogle Scholar
  3. Applequist WL, Cronn RC, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17CrossRefPubMedGoogle Scholar
  4. Bardil A, Dantas de Almeida J, Combes MC, Lashermes P, Bertrand B (2011) Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol (in press)Google Scholar
  5. Beasley JO (1941) Hybridization, cytology, and polyploidy of Gossypium. Chronica Bot 6:394–395Google Scholar
  6. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 89–162CrossRefGoogle Scholar
  7. Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226CrossRefPubMedGoogle Scholar
  8. Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62CrossRefPubMedGoogle Scholar
  9. Bottley A, Koebner RM (2008) Variation for homoeologous gene silencing in hexaploid wheat. Plant J 56:297–302CrossRefPubMedGoogle Scholar
  10. Bottley A, Xia G, Koebner R (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906CrossRefPubMedGoogle Scholar
  11. Brubaker CL, Bourland FM, Wendel JF (1999a) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology and production. Wiley, New York, pp 3–31Google Scholar
  12. Brubaker CL, Paterson AH, Wendel JF (1999b) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  13. Brubaker CL, Wendel JF (1993) On the specific status of Gossypium lanceolatum Todaro. Genet Res Crop Evol 40:165–170CrossRefGoogle Scholar
  14. Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326CrossRefGoogle Scholar
  15. Brubaker CL, Wendel JF (2001) RFLP diversity in cotton. In: Jenkins JN, Saha S (eds) Genetic improvement of cotton: emerging technologies. Science Publishers, Inc., Enfield, pp 81–102Google Scholar
  16. Buggs RJA, Elliott NM, Zhang L, Koh J, Viccini LF, Soltis DE, Soltis PS (2010) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186:175–183CrossRefPubMedGoogle Scholar
  17. Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517CrossRefPubMedGoogle Scholar
  18. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406CrossRefPubMedGoogle Scholar
  19. Cronn R, Small RL, Wendel JF (1999) Duplicated genes evolve independently following polyploid formation in cotton. Proc Nat Acad Sci USA 96:14406–14411CrossRefPubMedGoogle Scholar
  20. Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42(6):685–705CrossRefPubMedGoogle Scholar
  21. DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Amer J Bot 79:1311–1319CrossRefGoogle Scholar
  22. Dong S, Adams KL (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190(4):1045–1057CrossRefPubMedGoogle Scholar
  23. Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Quart Rev Biol 70:297–320CrossRefPubMedGoogle Scholar
  24. Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:271–375CrossRefGoogle Scholar
  25. Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:11CrossRefGoogle Scholar
  26. Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193CrossRefPubMedGoogle Scholar
  27. Flagel LE, Wendel JF, Udall JA (2012) Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics (in press)Google Scholar
  28. Fryxell PA (1965) Stages in the evolution of Gossypium. Adv Frontiers Plant Sci 10:31–56Google Scholar
  29. Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308CrossRefGoogle Scholar
  30. Fryxell PA (1979) The natural history of the cotton tribe Texas. A&M University Press College Station, College StationGoogle Scholar
  31. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  32. Galau GA, Wilkins TA (1989) Alloplasmic male sterility in AD allotetraploid Gossypium hirsutum upon replacement of its resident a cytoplasm with that of D species G. harknessii. Theor Appl Genet 78:23–30CrossRefGoogle Scholar
  33. Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  34. Grover CE, Kim H, Wing RA, Paterson AH, Wendel JF (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482CrossRefPubMedGoogle Scholar
  35. Grover CE, Kim H, Wing RA, Paterson AH, Wendel JF (2007) Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium). Plant J 50:995–1006CrossRefPubMedGoogle Scholar
  36. Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, Mcknight TD, Price HJ, Stelly DM (1999) Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 8:73–76CrossRefGoogle Scholar
  37. Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, McKnight TD, Stelly DM, Price HJ (1998) Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85:1364–1368CrossRefPubMedGoogle Scholar
  38. Harland SC (1936) The genetical conception of the species. Cambridge Philos Soc Biol Rev 11:83–112CrossRefGoogle Scholar
  39. Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18CrossRefPubMedGoogle Scholar
  40. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16(10):1252–1261CrossRefPubMedGoogle Scholar
  41. Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Nat Acad Sci USA 106(42):17811–17816CrossRefPubMedGoogle Scholar
  42. Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797CrossRefPubMedGoogle Scholar
  43. Hovav R, Chaudhary B, Udall JA, Flagel L, Wendel JF (2008a) Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics 179(3):1725–1733CrossRefPubMedGoogle Scholar
  44. Hovav R, Udall J, Chaudhary B, Flagel L, Rapp R, Wendel J (2008b) Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Nat Acad Sci USA 105:6191Google Scholar
  45. Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel JF (2008c) The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet 4:e25CrossRefPubMedGoogle Scholar
  46. Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607CrossRefPubMedGoogle Scholar
  47. Hu G, Houston NL, Pathak D, Schmidt L, Thelan JJ, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115CrossRefPubMedGoogle Scholar
  48. Hutchinson JB (1951) Intra-specific differentiation in Gossypium hirsutum. Heredity 5:161–193CrossRefGoogle Scholar
  49. Hutchinson JB (1954) New evidence on the origin of the old world cottons. Heredity 8:225–241CrossRefGoogle Scholar
  50. Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. Oxford University Press, LondonGoogle Scholar
  51. Jiang C, Wright R, El-Zik K, Paterson A (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Nat Acad Sci USA 95:4419–4424CrossRefPubMedGoogle Scholar
  52. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing, and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedGoogle Scholar
  53. Krapovickas A, Seijo G (2008) Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 17:55–63Google Scholar
  54. Lin L, Paterson AH (2009) Physical composition and organization of the Gossypium genomes. In: Paterson AH (ed) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New York, pp 141–156CrossRefGoogle Scholar
  55. Lin LF, Tang HB, Compton RO, Lemke C, Rainville LK, Wang XY, Rong JK, Rana MK, Paterson AH (2011) Comparative analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage. Genomics 97:313–320CrossRefPubMedGoogle Scholar
  56. Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330CrossRefPubMedGoogle Scholar
  57. Liu Z, Adams KL (2007) Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 17:1669–1674CrossRefPubMedGoogle Scholar
  58. Muravenko O, Fedotov AR, Punina EO, Federova LI, Grif VG, Zelenin AV (1998) Comparison of chromosome BrdU-hoechst-giemsa banding patterns of the A1 and (AD)2 genomes of cotton. Genome 41:616–625Google Scholar
  59. Osborn TC, Chris Pires J, Birchler JA, Auger DL, Jeffery Chen Z, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19(3):141–147CrossRefPubMedGoogle Scholar
  60. Paterson AH (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191CrossRefPubMedGoogle Scholar
  61. Paterson AH (2009) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New YorkCrossRefGoogle Scholar
  62. Percy RG, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Appl Genet 79:529–542CrossRefGoogle Scholar
  63. Rapp R, Haigler C, Flagel L, Hovav R, Udall J, Wendel J (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139CrossRefPubMedGoogle Scholar
  64. Rapp R, Wendel J (2005) Epigenetics and plant evolution. New Phytol 168:81CrossRefPubMedGoogle Scholar
  65. Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18CrossRefPubMedGoogle Scholar
  66. Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum x G. barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  67. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417CrossRefPubMedGoogle Scholar
  68. Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JR, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588CrossRefPubMedGoogle Scholar
  69. Rong J, Feltus FA, Liu L, Lin L, Paterson AH (2010) Gene copy number evolution during tetraploid cotton radiation. Heredity 105(5):463–472CrossRefPubMedGoogle Scholar
  70. Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134CrossRefPubMedGoogle Scholar
  71. Saunders JH (1961) The wild species of Gossypium and their evolutionary history. Oxford University Press, LondonGoogle Scholar
  72. Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JF (1999) Molecular systematics of Australian Gossypium section grandicalyx (Malvaceae). Syst Bot 24:183–208CrossRefGoogle Scholar
  73. Senchina DS, Alvarez I, Cronn RC, Liu B, Rong JK, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643CrossRefPubMedGoogle Scholar
  74. Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990CrossRefPubMedGoogle Scholar
  75. Small RL, Ryburn JA, Wendel JF (1999) Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16:491–501CrossRefPubMedGoogle Scholar
  76. Small RL, Wendel JF (1999) The mitochondrial genome of allotetraploid cotton (Gossypium L.). J Hered 90:251–253CrossRefPubMedGoogle Scholar
  77. Small RL, Wendel JF (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19:597–607CrossRefPubMedGoogle Scholar
  78. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Nat Acad Sci USA 97:7051–7057CrossRefPubMedGoogle Scholar
  79. Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429CrossRefPubMedGoogle Scholar
  80. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  81. Stephens SG (1958) Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. Amer Nat 92:83–92CrossRefGoogle Scholar
  82. Stephens SG (1966) The potential for long range oceanic dispersal of cotton seeds. Amer Nat 100:199–210CrossRefGoogle Scholar
  83. Stewart JM (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW (eds) Challenging the future: proceedings of the world cotton research, CSIRO, Melbourne, pp 313–327Google Scholar
  84. Stewart JM, Oosterhuis D, Heithholt JJ, Mauney JR (2010) Physiology of cotton. Springer, The NetherlandsCrossRefGoogle Scholar
  85. Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173(3):1823–1827CrossRefPubMedGoogle Scholar
  86. Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16R:872–873CrossRefPubMedGoogle Scholar
  87. Veitia RA (2005) Gene dosage balance: deletions, duplications and dominance. Trends Genet 21:33CrossRefPubMedGoogle Scholar
  88. Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517CrossRefPubMedGoogle Scholar
  89. Watt G (1907) The wild and cultivated cotton plants of the world. Longmans, Green and Co, LondonGoogle Scholar
  90. Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Nat Acad Sci USA 86:4132–4136CrossRefPubMedGoogle Scholar
  91. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249CrossRefPubMedGoogle Scholar
  92. Wendel JF, Brubaker CL, Alvarez JP, Cronn RC, Stewart JM (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genomics of cotton, plant genetics and genomics, crops and models 3. Springer, New York, pp 3–22CrossRefGoogle Scholar
  93. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  94. Wendel JF, Rowley R, Stewart JM (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Pl Syst Evol 192:49–59CrossRefGoogle Scholar
  95. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Nat Acad Sci USA 92:280–284CrossRefPubMedGoogle Scholar
  96. Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149:1987–1996PubMedGoogle Scholar
  97. Xu Z, Yu JZ, Cho J, Yu J, Kohel RJ, Percy RG (2010) Polyploidization altered gene functions in cotton (Gossypium spp.). PLoS ONE 5:e14351CrossRefPubMedGoogle Scholar
  98. Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonathan F. Wendel
    • 1
  • Lex E. Flagel
    • 2
  • Keith L. Adams
    • 3
  1. 1.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  2. 2.Department of BiologyDuke UniversityDurhamUSA
  3. 3.Department of Botany, and UBC Botanical Garden and Centre for Plant ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations