Advertisement

Understanding Cognition Through Functional Connectivity

  • Agnieszka Rychwalska
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

With every word that you read on this page, your brain orchestrates a symphony of electrical sounds – millions of neurons perform at the same time and billions of synapses coordinate their sounds. If you make yourself a break and start preparing a coffee, a new array of neural musicians will become active. While we know right now quite well how these functions that you perform are segregated in the brain – that is, which set of neurons activates to enable your reading and which to make you remember where you put the coffee jar – it still remains a challenge to understand how the brain integrates separated tasks into a coherent function. How does it happen that the letters form a word in your mind and the words form a meaningful sentence? How do you coordinate the movement of your hands when you reach for the cup with one and for the coffee pot with the other? New tools made available by complexity sciences – the modern network theory – give us a unique chance to describe and measure the integration of information in the brain that is crucial for any function it performs.

Keywords

Functional Connectivity Functional Network Information Integration Local Field Potential Binocular Rivalry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61(5), 900–917 (1989)Google Scholar
  2. Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C., Postma, T.J., Heimans, J.J., et al.: Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin. Neurophysiol. 117(9), 2039–2049 (2006). doi: 10.1016/j.clinph.2006.05.018 CrossRefGoogle Scholar
  3. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. 103(51), 19518–19523 (2006). doi: 10.1073/pnas.0606005103 CrossRefGoogle Scholar
  4. Cajal, S.R.Y., Azoulay, L.: Histologie du système nerveux de l’homme & des vertébrés: avec fig. Maloine (1911)Google Scholar
  5. Csépe, V., Juckel, G., Molnár, M., Karmos, G.: Stimulus-related oscillatory responses in the auditory cortex of cats. In: Pantev, W.C., Elbert, T., Lütkenhöner, B. (eds.) Oscillatory Event Related Brain Dynamics. Plenum Press, New York (1994)Google Scholar
  6. Desmedt, J.E., Tomberg, C.: Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci. Lett. 168(1–2), 126–129 (1994). doi: 10.1016/0304-3940(94)90432-4 CrossRefGoogle Scholar
  7. Eckhorn, R.: Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Prog. Brain Res. 102, 405–426 (1994)CrossRefGoogle Scholar
  8. Engel, A.K., König, P., Kreiter, A.K., Singer, W.: Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252(5010), 1177–1179 (1991)CrossRefGoogle Scholar
  9. Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C.E., Fernandez, G.: Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat. Neurosci. 4(12), 1259–1264 (2001). doi: 10.1038/nn759 CrossRefGoogle Scholar
  10. Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., Kehr, H.: Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. Neuroreport 5(17), 2273–2277 (1994)CrossRefGoogle Scholar
  11. Fries, P., Schroder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22(9), 3739–3754 (2002). doi: 20026318 Google Scholar
  12. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989). doi: 10.1038/338334a0 CrossRefGoogle Scholar
  13. He, Y., Chen, Z.J., Evans, A.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17(10), 2407–2419 (2007). doi: 10.1093/cercor/bhl149 CrossRefGoogle Scholar
  14. Hebb, D.O.: The Organization of Behavior. Wiley, New York/London (1949)Google Scholar
  15. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)Google Scholar
  16. Kohler, W.: Gestalt Psychology. Liveright, New York (1929)Google Scholar
  17. Meunier, D., Achard, S., Morcom, A., Bullmore, E. (eds.): Age-related changes in modular organization of human brain functional networks. NeuroImage, 44(3), 715–723 (2009). doi:10.1016/j.neuroimage.2008.09.062Google Scholar
  18. Meunier, D., Lambiotte, R., Fornito, A., Ersche, K.D., Bullmore, E.T.: Hierarchical modularity in human brain functional networks. Front. Neuroinf. 3(37) (2009b). doi: 10.3389/neuro.11.037.2009
  19. Micheloyannis, S., Pachou, E., Stam, C.J., Vourkas, M., Erimaki, S., Tsirka, V.: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci. Lett. 402(3), 273–277 (2006). doi: 10.1016/j.neulet.2006.04.006 CrossRefGoogle Scholar
  20. Miltner, W.H., Braun, C., Arnold, M., Witte, H., Taub, E.: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397(6718), 434–436 (1999). doi: 10.1038/17126 CrossRefGoogle Scholar
  21. Murthy, V.N., Fetz, E.E.: Coherent 25–35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. U.S.A. 89(12), 5670–5674 (1992)CrossRefGoogle Scholar
  22. Murthy, V.N., Aoki, F., Fetz, E.E.: Synchronous oscillations in sensorimotor cortex of awake monkeys and humans. In: Pantev, W.C., Elbert, T., Lütkenhöner, B. (eds.) Oscillatory Event Related Brain Dynamics, pp. 343–356. Plenum Press, New York (1994)Google Scholar
  23. Pantev, C., Elbert, T.: The transient auditory evoked gamma-band field. In: Pantev, W.C., Elbert, T., Lütkenhöner, B. (eds.) Oscillatory Event-Related Brain Dynamics, pp. 219–230. Plenum Press, New York (1994)Google Scholar
  24. Ponten, S.C., Bartolomei, F., Stam, C.J.: Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 118(4), 918–927 (2007). doi: 10.1016/j.clinph.2006.12.002 CrossRefGoogle Scholar
  25. Pulvermüller, F., Preißl, H., Eulitz, C., Pantev, C., Lutzenberger, W., Feige, B., Elbert, T., et al.: Gamma-band responses reflect word/pseudoword processing. In: Pantev, W.C., Elbert, T., Lütkenhöner, B. (eds.) Oscillatory Event Related Brain Dynamics, pp. 243–258. Plenum Press, New York (1994)Google Scholar
  26. Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J.: Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718), 430–433 (1999). doi: 10.1038/17120 CrossRefGoogle Scholar
  27. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15(9), 1332–1342 (2005a). doi: 10.1093/cercor/bhi016 CrossRefGoogle Scholar
  28. Salvador, R., Suckling, J., Schwarzbauer, C., Bullmore, E. (eds.): Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos. Trans. Roy. Soc. B: Biol. Sci. 360(1457), 937–946 (2005). doi:10.1098/rstb.2005.1645Google Scholar
  29. Simon, H.A.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467–482 (1962)Google Scholar
  30. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49–65, 111–125 (1999)Google Scholar
  31. Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18(1), 555–586 (1995). doi: 10.1146/annurev.ne.18.030195.003011 CrossRefGoogle Scholar
  32. Sporns, O., Zwi, J.: The small world of the cerebral cortex. Neuroinformatics 2(2), 145–162 (2004). doi: 10.1385/NI:2:2:145 CrossRefGoogle Scholar
  33. Stam, C.J., Reijneveld, J.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1(1), 3 (2007). doi: 10.1186/1753-4631-1-3 CrossRefGoogle Scholar
  34. Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17(1), 92–99 (2007). doi: 10.1093/cercor/bhj127 CrossRefGoogle Scholar
  35. Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G.: Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390(6655), 70–74 (1997). doi: 10.1038/36335 CrossRefGoogle Scholar
  36. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J. Neurosci. 17(2), 722–734 (1997)Google Scholar
  37. Tononi, G., Srinivasan, R., Russell, D.P., Edelman, G.M.: Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc. Natl. Acad. Sci. U.S.A. 95(6), 3198–3203 (1998)CrossRefGoogle Scholar
  38. Valencia, M., Martinerie, J., Dupont, S., Chavez, M.: Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E 77(5), 050905 (2008). doi: 10.1103/PhysRevE.77.050905 CrossRefGoogle Scholar
  39. von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., Hemmen, J.L. (eds.) Models of Neural Networks II: Temporal Aspects of Coding and Information Processing in Biological Systems, Chapter 2, pp. 95–119. Springer, New York (1994)Google Scholar
  40. von Stein, A., Sarnthein, J.: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38(3), 301–313 (2000). doi: 10.1016/S0167-8760(00)00172-0 CrossRefGoogle Scholar
  41. von Stein, A., Rappelsberger, P., Sarnthein, J., Petsche, H.: Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb. Cortex 9(2), 137–150 (1999). doi: 10.1093/cercor/9.2.137 CrossRefGoogle Scholar
  42. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). doi: 10.1038/30918 CrossRefGoogle Scholar
  43. Wrobel, A., Ghazaryan, A., Bekisz, M., Bogdan, W., Kaminski, J.: Two streams of attention-dependent beta activity in the striate recipient zone of cat’s lateral posterior-pulvinar complex. J. Neurosci. 27(9), 2230–2240 (2007). doi: 10.1523/JNEUROSCI.4004-06.2007 CrossRefGoogle Scholar
  44. Yu, S., Huang, D., Singer, W., Nikolić, D.: A small world of neuronal synchrony. Cereb. Cortex 18(12), 2891–2901 (2008). doi: 10.1093/cercor/bhn047 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Social StudiesUniversity of WarsawWarsawPoland

Personalised recommendations