Skip to main content

The Dynamics of Subaqueous Rock Avalanches: The Role of Dynamic Fragmentation

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Rock and debris-avalanches are catastrophic failures occurring both on land and in the subaqueous environment. The apparent friction coefficient of subaqueous rock avalanches is significantly greater than that of debris flows of the same volume. We argue that this is the consequence of the presence of large fragments in a travelling rock avalanche, which affects both the drag coefficient and the capability of hydroplaning. We suggest that the presence of water damps the fragmentation of the subaqueous rock avalanches, as indicated by the presence of much larger blocks in the deposits of subaqueous rock avalanches compared to the subaerial ones. We present simple estimates to evaluate the disintegration rates during the flow in the two different environments and we found that this is strongly reduced in water mainly due to: (1) reduction of inter-granular impact energy; (2) smoother topography in subaqueous landscape; (3) lower velocities reached due to the water resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohannon RG, Gardner JV (2004) Submarine landslides of San Pedro Escarpment, southwest of Long Beach, California. Mar Geol 203:261–268

    Article  Google Scholar 

  • Chiocci FL, de Alteriis G (2006) The Ischia debris avalanche: first clear submarine evidence in the mediterranean of a volcanic island prehistorical collapse. Terra Nova 18:202–209

    Article  Google Scholar 

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112. doi:10.1029/2005JF000455

  • Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109(1–2):67–79

    Article  Google Scholar 

  • De Blasio FV, Elverhøi A, Engvik L, Issler D, Gauer P, Harbitz C (2006) Understanding the high mobility of subaqueous debris flows. Nor J Geol, special issue on “Submarine mass movements and their consequences” 86:275–284

    Google Scholar 

  • De Blasio FV (2011) Introduction to the physics of landslides: lecture notes on the dynamics of mass wasting. Springer, Netherlands. doi:10.1007/978-94-007-1122-8

    Book  Google Scholar 

  • Duran J (1999) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, Berlin

    Google Scholar 

  • Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Segoufin J, Cheminée JL (2001) Submarine evidence for large scale debris avalanches in the Lesser Antilles Arc. Earth Planet Sci Lett 192:145–157

    Article  Google Scholar 

  • Francis PW, Gardeweg M, O’Callaghan LJ, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socampa volcano, north Chile. Geology 13:600–603

    Article  Google Scholar 

  • Gardner JV, Mayer LA, Hughs Clarke JE (2000) Morphology and processes in Lake Tahoe (California-Nevada). GSA Bull 112(5):736–746

    Article  Google Scholar 

  • Haff PK (1983) Grain flow as a fluid-mechanical problem. J Fluid Mech 134:401–430

    Article  Google Scholar 

  • Hildenbrand A, Gillot PY, Bonneville A (2006) Offshore evidence for a huge landslide of the northern flank of Tahiti-Nui (French Polynesia). Geochem Geophys Geosyst (G3) 7(3):Q03006. doi:10.1029/2005GC001003

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MV, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • King RP (2001) Modeling and simulation of mineral processing systems. Butterworth Heinemann, Boston

    Google Scholar 

  • Lee H, Ryan H, Kayen RE, Haeussler PJ, Dartnell P, Hampton MA (2006) Varieties of submarine failure morphologies of seismically-induced landslides in Alaskan fjords. Nor J Geol 86:221–230

    Google Scholar 

  • Lewis K, Collot JY (2001) Giant submarine avalanche: was this “Deep Impact” New Zealand style? Water Atmos 9:26–27

    Google Scholar 

  • Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher CE (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaai. J Geophys Res 93:4279–4299

    Article  Google Scholar 

  • Legros F (2002) The mobility of long runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Locat P, Couture R, Leroueil S, Locat J, Jaboyedoff M (2006) Fragmentation energy in rock avalanches. Can Geotech J 43(8):830–851

    Article  Google Scholar 

  • Makse HA, Johnson DL, Schwartz LM (2000) Packing of compressible granular materials. Phys Rev Lett 84:4160–4163

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35

    Article  Google Scholar 

  • Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res. doi:10.1007/s11001-011-9117-1

  • Mcdowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48:667–679

    Article  Google Scholar 

  • Mitchell NC, Douglas G, Masson DG, Watts AB, Gee MJR, Urgeles R (2002) The morphology of the submarine flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J Volcanol Geotherm Res 115:83–107

    Article  Google Scholar 

  • Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110:387–394

    Article  Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian Landslides. Ann Rev Earth Planet Sci 22:119–144

    Article  Google Scholar 

  • Normark WR, McGann M, Sliter R (2004) Age of Palos Verdes submarine debris avalanche, southern California. Mar Geol 203:247–259

    Article  Google Scholar 

  • Pollet N, Schneider JLM (2004) Dynamic disintegration processes accompanying transport of the Holocene flims sturzstrom (Swiss Alps). Earth Planet Sci Lett 221:433–448

    Article  Google Scholar 

  • Satake K, Kato Y (2001) The 1741 Oshima-Oshima eruption: extent and volume of submarine debris avalanche. Geophys Res Lett 28:427–430

    Article  Google Scholar 

  • Scheidegger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris Avalanches. In: Sigurdsson H (ed) Encyclopedia of volcanology. Academic, San Diego

    Google Scholar 

  • Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The last major megalandslides in the Canary Islands: the El Golfo debris avalanche and the Canary debris flow, west Hierro Island. J Geophys Res 102:20305–20323

    Article  Google Scholar 

  • Urgeles R, Masson DG, Canals M, Watts AB, Le Bas T (1999) Recurrent giant landslides on the west flank of La Palma, Canary Islands. J Geophys Res 104:25331–25348

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the CERI, Research Centre for Hydrogeological Risks, University of Rome “Sapienza”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mazzanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazzanti, P., De Blasio, F.V. (2013). The Dynamics of Subaqueous Rock Avalanches: The Role of Dynamic Fragmentation. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31427-8_4

Download citation

Publish with us

Policies and ethics