Advertisement

The Dynamics of Subaqueous Rock Avalanches: The Role of Dynamic Fragmentation

  • Paolo MazzantiEmail author
  • Fabio Vittorio De Blasio
Chapter

Abstract

Rock and debris-avalanches are catastrophic failures occurring both on land and in the subaqueous environment. The apparent friction coefficient of subaqueous rock avalanches is significantly greater than that of debris flows of the same volume. We argue that this is the consequence of the presence of large fragments in a travelling rock avalanche, which affects both the drag coefficient and the capability of hydroplaning. We suggest that the presence of water damps the fragmentation of the subaqueous rock avalanches, as indicated by the presence of much larger blocks in the deposits of subaqueous rock avalanches compared to the subaerial ones. We present simple estimates to evaluate the disintegration rates during the flow in the two different environments and we found that this is strongly reduced in water mainly due to: (1) reduction of inter-granular impact energy; (2) smoother topography in subaqueous landscape; (3) lower velocities reached due to the water resistance.

Keywords

Fragmentation Rock avalanche Blocks Landslide Dynamics Impact Crushing 

Notes

Acknowledgements

We acknowledge financial support from the CERI, Research Centre for Hydrogeological Risks, University of Rome “Sapienza”.

References

  1. Bohannon RG, Gardner JV (2004) Submarine landslides of San Pedro Escarpment, southwest of Long Beach, California. Mar Geol 203:261–268CrossRefGoogle Scholar
  2. Chiocci FL, de Alteriis G (2006) The Ischia debris avalanche: first clear submarine evidence in the mediterranean of a volcanic island prehistorical collapse. Terra Nova 18:202–209CrossRefGoogle Scholar
  3. Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112. doi: 10.1029/2005JF000455
  4. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109(1–2):67–79CrossRefGoogle Scholar
  5. De Blasio FV, Elverhøi A, Engvik L, Issler D, Gauer P, Harbitz C (2006) Understanding the high mobility of subaqueous debris flows. Nor J Geol, special issue on “Submarine mass movements and their consequences” 86:275–284Google Scholar
  6. De Blasio FV (2011) Introduction to the physics of landslides: lecture notes on the dynamics of mass wasting. Springer, Netherlands. doi: 10.1007/978-94-007-1122-8 CrossRefGoogle Scholar
  7. Duran J (1999) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, BerlinGoogle Scholar
  8. Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Segoufin J, Cheminée JL (2001) Submarine evidence for large scale debris avalanches in the Lesser Antilles Arc. Earth Planet Sci Lett 192:145–157CrossRefGoogle Scholar
  9. Francis PW, Gardeweg M, O’Callaghan LJ, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socampa volcano, north Chile. Geology 13:600–603CrossRefGoogle Scholar
  10. Gardner JV, Mayer LA, Hughs Clarke JE (2000) Morphology and processes in Lake Tahoe (California-Nevada). GSA Bull 112(5):736–746CrossRefGoogle Scholar
  11. Haff PK (1983) Grain flow as a fluid-mechanical problem. J Fluid Mech 134:401–430CrossRefGoogle Scholar
  12. Hildenbrand A, Gillot PY, Bonneville A (2006) Offshore evidence for a huge landslide of the northern flank of Tahiti-Nui (French Polynesia). Geochem Geophys Geosyst (G3) 7(3):Q03006. doi: 10.1029/2005GC001003 CrossRefGoogle Scholar
  13. Hungr O, Evans SG, Bovis MV, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238Google Scholar
  14. King RP (2001) Modeling and simulation of mineral processing systems. Butterworth Heinemann, BostonGoogle Scholar
  15. Lee H, Ryan H, Kayen RE, Haeussler PJ, Dartnell P, Hampton MA (2006) Varieties of submarine failure morphologies of seismically-induced landslides in Alaskan fjords. Nor J Geol 86:221–230Google Scholar
  16. Lewis K, Collot JY (2001) Giant submarine avalanche: was this “Deep Impact” New Zealand style? Water Atmos 9:26–27Google Scholar
  17. Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher CE (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaai. J Geophys Res 93:4279–4299CrossRefGoogle Scholar
  18. Legros F (2002) The mobility of long runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  19. Locat P, Couture R, Leroueil S, Locat J, Jaboyedoff M (2006) Fragmentation energy in rock avalanches. Can Geotech J 43(8):830–851CrossRefGoogle Scholar
  20. Makse HA, Johnson DL, Schwartz LM (2000) Packing of compressible granular materials. Phys Rev Lett 84:4160–4163CrossRefGoogle Scholar
  21. Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary islands. Geology 24:231–234CrossRefGoogle Scholar
  22. Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35CrossRefGoogle Scholar
  23. Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res. doi: 10.1007/s11001-011-9117-1
  24. Mcdowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48:667–679CrossRefGoogle Scholar
  25. Mitchell NC, Douglas G, Masson DG, Watts AB, Gee MJR, Urgeles R (2002) The morphology of the submarine flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J Volcanol Geotherm Res 115:83–107CrossRefGoogle Scholar
  26. Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110:387–394CrossRefGoogle Scholar
  27. Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian Landslides. Ann Rev Earth Planet Sci 22:119–144CrossRefGoogle Scholar
  28. Normark WR, McGann M, Sliter R (2004) Age of Palos Verdes submarine debris avalanche, southern California. Mar Geol 203:247–259CrossRefGoogle Scholar
  29. Pollet N, Schneider JLM (2004) Dynamic disintegration processes accompanying transport of the Holocene flims sturzstrom (Swiss Alps). Earth Planet Sci Lett 221:433–448CrossRefGoogle Scholar
  30. Satake K, Kato Y (2001) The 1741 Oshima-Oshima eruption: extent and volume of submarine debris avalanche. Geophys Res Lett 28:427–430CrossRefGoogle Scholar
  31. Scheidegger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236CrossRefGoogle Scholar
  32. Ui T, Takarada S, Yoshimoto M (2000) Debris Avalanches. In: Sigurdsson H (ed) Encyclopedia of volcanology. Academic, San DiegoGoogle Scholar
  33. Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The last major megalandslides in the Canary Islands: the El Golfo debris avalanche and the Canary debris flow, west Hierro Island. J Geophys Res 102:20305–20323CrossRefGoogle Scholar
  34. Urgeles R, Masson DG, Canals M, Watts AB, Le Bas T (1999) Recurrent giant landslides on the west flank of La Palma, Canary Islands. J Geophys Res 104:25331–25348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NHAZCA S.r.l., spin-off “Sapienza” Università di RomaRomeItaly
  2. 2.CERI, Research Centre for Prevention, Prediction and Control of Geological Risks, “Sapienza” Università di RomaRomeItaly
  3. 3.Department of GeosciencesUniversity of OsloOsloNorway

Personalised recommendations