Advertisement

Efficient Controller Synthesis for Consumption Games with Multiple Resource Types

  • Tomáš Brázdil
  • Krishnendu Chatterjee
  • Antonín Kučera
  • Petr Novotný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)

Abstract

We introduce consumption games, a model for discrete interactive system with multiple resources that are consumed or reloaded independently. More precisely, a consumption game is a finite-state graph where each transition is labeled by a vector of resource updates, where every update is a non-positive number or ω. The ω updates model the reloading of a given resource. Each vertex belongs either to player □ or player  Open image in new window , where the aim of player □ is to play so that the resources are never exhausted. We consider several natural algorithmic problems about consumption games, and show that although these problems are computationally hard in general, they are solvable in polynomial time for every fixed number of resource types (i.e., the dimension of the update vectors) and bounded resource updates.

Keywords

Polynomial Time Minimal Element Current Load Safe Distance Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beeri, C.: On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. on Database Systems 5, 241–259 (1980)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under energy constraints. In: Johansson, K., Yi, W. (eds.) HSCC 2010, pp. 61–70. ACM (2010)Google Scholar
  3. 3.
    Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis for consumption games with multiple resource types, CoRR abs/1202.0796 (2012)Google Scholar
  4. 4.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Chaloupka, J.: Z-Reachability Problem for Games on 2-Dimensional Vector Addition Systems with States Is in P. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 104–119. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: Lodaya, K., Mahajan, M. (eds.) Proc. of FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  8. 8.
    Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, pp. 99–110. IEEE (1997)Google Scholar
  9. 9.
    Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS 1988, pp. 328–337. IEEE (1988)Google Scholar
  10. 10.
    Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences 22(3), 384–406 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kurshan, R.: Computer-aided verification of coordinating processes: the automata-theoretic approach. Princeton University Press (1994)Google Scholar
  12. 12.
    Lipton, R.: The reachability problem requires exponential space. Technical report 62, Yale University (1976)Google Scholar
  13. 13.
    Piterman, N., Pnueli, A.: Faster solution of Rabin and Streett games. In: LICS 2006, pp. 275–284. IEEE (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomáš Brázdil
    • 1
  • Krishnendu Chatterjee
    • 2
  • Antonín Kučera
    • 1
  • Petr Novotný
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.IST AustriaKlosterneuburgAustria

Personalised recommendations