A Complete Method for Symmetry Reduction in Safety Verification

  • Duc-Hiep Chu
  • Joxan Jaffar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)


Symmetry reduction is a well-investigated technique to counter the state space explosion problem for reasoning about a concurrent system of similar processes. Here we present a general method for its application, restricted to verification of safety properties, but without any prior knowledge about global symmetry. We start by using a notion of weak symmetry which allows for more reduction than in previous notions of symmetry. This notion is relative to the target safety property. The key idea is to perform symmetric transformations on state interpolation, a concept which has been used widely for pruning in SMTand CEGAR. Our method naturally favors “quite symmetric” systems: more similarity among the processes leads to greater pruning of the tree. The main result is that the method is complete wrt. weak symmetry: it only considers states which are not weakly symmetric to an already encountered state.


Safety Property Program Variable Concurrent System Symbolic Execution Symmetry Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chu, D.H., Jaffar, J.: Symbolic simulation on complicated loops for WCET path analysis. In: EMSOFT, pp. 319–328 (2011)Google Scholar
  2. 2.
    Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal Logic Model Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18, 453–457 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Emerson, E.A., Havlicek, J.W., Trefler, R.J.: Virtual symmetry reduction. In: Logic in Computer Science, pp. 121–131 (2000)Google Scholar
  5. 5.
    Emerson, E.A., Sistla, A.P.: Model Checking and Symmetry. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model-checking under fairness assumptions. ACM Trans. Program. Lang. Syst. 19(4), 617–638 (1997)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Trefler, R.J.: From Asymmetry to Full Symmetry: New Techniques for Symmetry Reduction in Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1/2), 41–75 (1996)Google Scholar
  9. 9.
    Jaffar, J., Navas, J.A., Santosa, A.E.: Unbounded Symbolic Execution for Program Verification. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 396–411. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Jaffar, J., Santosa, A.E., Voicu, R.: An Interpolation Method for CLP Traversal. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking. ACM Trans. Program. Lang. Syst. 26(4), 702–734 (2004)CrossRefGoogle Scholar
  13. 13.
    SPIN model checker,
  14. 14.
    Wahl, T.: Adaptive Symmetry Reduction. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 393–405. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Wahl, T., D’Silva, V.: A lazy approach to symmetry reduction. Form. Asp. Comput. 22, 713–733 (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Duc-Hiep Chu
    • 1
  • Joxan Jaffar
    • 1
  1. 1.National University of SingaporeSingapore

Personalised recommendations