Advertisement

A Box-Based Distance between Regions for Guiding the Reachability Analysis of SpaceEx

  • Sergiy Bogomolov
  • Goran Frehse
  • Radu Grosu
  • Hamed Ladan
  • Andreas Podelski
  • Martin Wehrle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)

Abstract

A recent technique used in falsification methods for hybrid systems relies on distance-based heuristics for guiding the search towards a goal state. The question is whether the technique can be carried over to reachability analyses that use regions as their basic data structure. In this paper, we introduce a box-based distance measure between regions. We present an algorithm that, given two regions, efficiently computes the box-based distance between them. We have implemented the algorithm in SpaceEx and use it for guiding the region-based reachability analysis of SpaceEx. We illustrate the practical potential of our approach in a case study for the navigation benchmark.

Keywords

Error State Model Check Hybrid System Region Space Cost Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicolin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Balluchi, A., Benvenuti, L., Di Benedetto, M.D., Pinello, C., Sangiovanni-Vincentelli, A.L.: Automotive engine control and hybrid systems: challenges and opportunities. Proceedings of the IEEE 88(7), 888–912 (2000)CrossRefGoogle Scholar
  5. 5.
    Barbano, P., Spivak, M., Feng, J., Antoniotti, M., Misra, B.: A coherent framework for multi-resolution analysis of biological networks with memory: Ras pathway, cell cycle and immune system. National Academy of Science, 6245–6250 (2005)Google Scholar
  6. 6.
    Batt, G., Belta, C., Weiss, R.: Model Checking Genetic Regulatory Networks with Parameter Uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Belta, C., Finin, P., Habets, L.C.G.J.M., Halász, Á.M., Imieliński, M., Kumar, R.V., Rubin, H.: Understanding the Bacterial Stringent Response Using Reachability Analysis of Hybrid Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 111–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Bhatia, A., Frazzoli, E.: Incremental Search Methods for Reachability Analysis of Continuous and Hybrid Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 142–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Branicky, M.S., Curtiss, M.M.: Nonlinear and hybrid control via RRTs. In: Symp. on Mathematical Theory of Networks and Systems (2002)Google Scholar
  10. 10.
    Chutinan, C., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48(1), 64–75 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Donzé, A., Maler, O.: Systematic Simulation Using Sensitivity Analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving abstractions. International Journal on Software Tools for Technology Transfer 11(1), 27–37 (2009)CrossRefGoogle Scholar
  13. 13.
    Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5(2), 247–267 (2004)CrossRefGoogle Scholar
  14. 14.
    Fehnker, A., Ivančić, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Frehse, G., Maler, O.: Reachability Analysis of a Switched Buffer Network. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 698–701. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Ghosh, R., Tomlin, C.J.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-notch protein signaling. IEEE Transactions on Systems Biology 1(1), 170–183 (2004)Google Scholar
  19. 19.
    Girard, A., Pappas, G.J.: Verification Using Simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From Cardiac Cells to Genetic Regulatory Networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Communications of the ACM (CACM) 52(3), 1–10 (2009)CrossRefGoogle Scholar
  22. 22.
    Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: ACM Symposium on Theory of Computing, pp. 373–382 (1995)Google Scholar
  23. 23.
    Henzinger, T., Wong-Toi, H.: Linear Phase-Portrait Approximations for Nonlinear Hybrid Systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 377–388. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  24. 24.
    Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A., Behrmann, G.: Uppaal/DMC – Abstraction-Based Heuristics for Directed Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 679–682. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI Planning Heuristic for Directed Model Checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 35–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Kupferschmid, S., Wehrle, M.: Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 276–290. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster Than Uppaal? In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Lincoln, P., Tiwari, A.: Symbolic Systems Biology: Hybrid Modeling and Analysis of Biological Networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. and Comp. 185(1), 103–157 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Maler, O., Yovine, S.: Hardware timing verification using kronos. In: Israeli Conference on Computer Systems and Software Engineering (1996)Google Scholar
  31. 31.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid Systems: From Verification to Falsification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 463–476. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Qian, K., Nymeyer, A.: Guided Invariant Model Checking Based on Abstraction and Symbolic Pattern Databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Ratschan, S., Smaus, J.G.: Verification-Integrated falsification of Non-Deterministic hybrid systems. In: Analysis and Design of Hybrid Systems (2006)Google Scholar
  34. 34.
    Silva, B., Stursberg, O., Krogh, B., Engell, S.: An assessment of the current status of algorithmic approaches to the verification of hybrid systems. In: IEEE Conf. on Decision and Control, pp. 2867–2874 (2001)Google Scholar
  35. 35.
    Singh, A., Hespanha, J.: Models for generegulatory networks using polynomial stochastic hybrid systems. In: CDC 2005 (2005)Google Scholar
  36. 36.
    Wehrle, M., Helmert, M.: The Causal Graph Revisited for Directed Model Checking. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 86–101. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sergiy Bogomolov
    • 1
  • Goran Frehse
    • 2
  • Radu Grosu
    • 3
  • Hamed Ladan
    • 1
  • Andreas Podelski
    • 1
  • Martin Wehrle
    • 1
    • 4
  1. 1.University of FreiburgGermany
  2. 2.Université Joseph Fourier Grenoble 1 – VerimagFrance
  3. 3.Vienna University of TechnologyAustria
  4. 4.University of BaselSwitzerland

Personalised recommendations