Minimum Satisfying Assignments for SMT

  • Isil Dillig
  • Thomas Dillig
  • Kenneth L. McMillan
  • Alex Aiken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)

Abstract

A minimum satisfying assignment of a formula is a minimum-cost partial assignment of values to the variables in the formula that guarantees the formula is true. Minimum satisfying assignments have applications in software and hardware verification, electronic design automation, and diagnostic and abductive reasoning. While the problem of computing minimum satisfying assignments has been widely studied in propositional logic, there has been no work on computing minimum satisfying assignments for richer theories. We present the first algorithm for computing minimum satisfying assignments for satisfiability modulo theories. Our algorithm can be used to compute minimum satisfying assignments in theories that admit quantifier elimination, such as linear arithmetic over reals and integers, bitvectors, and difference logic. Since these richer theories are commonly used in software verification, we believe our algorithm can be gainfully used in many verification approaches.

Keywords

Propositional Logic Satisfying Assignment Partial Assignment Predicate Abstraction Linear Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ravi, K., Somenzi, F.: Minimal Assignments for Bounded Model Checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Marquis, P.: Extending Abduction from Propositional to First-Order Logic. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535, pp. 141–155. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate Abstraction with Minimum Predicates. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 19–34. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Silva, J.: On computing minimum size prime implicants. In: International Workshop on Logic Synthesis, Citeseer (1997)Google Scholar
  5. 5.
    Pizzuti, C.: Computing prime implicants by integer programming. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 332–336. IEEE (1996)Google Scholar
  6. 6.
    Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference. In: PLDI (2012)Google Scholar
  7. 7.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dillig, I., Dillig, T., Aiken, A.: Small Formulas for Large Programs: On-Line Constraint Simplification in Scalable Static Analysis. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 236–252. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Sörensson, N., Een, N.: Minisat v1. 13-a sat solver with conflict-clause minimization. In: SAT 2005, p. 53 (2005)Google Scholar
  11. 11.
    Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Intelligence 7(91-99), 300 (1972)Google Scholar
  12. 12.
    Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. POPL 46(1), 187–200 (2011)Google Scholar
  13. 13.
    Manquinho, V., Flores, P., Silva, J., Oliveira, A.: Prime implicant computation using satisfiability algorithms. In: ICTAI, pp. 232–239 (1997)Google Scholar
  14. 14.
    Amla, N., McMillan, K.L.: Combining Abstraction Refinement and SAT-Based Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 405–419. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isil Dillig
    • 1
  • Thomas Dillig
    • 1
  • Kenneth L. McMillan
    • 2
  • Alex Aiken
    • 3
  1. 1.College of William & MaryUSA
  2. 2.Microsoft ResearchUSA
  3. 3.Stanford UniversityUSA

Personalised recommendations