Assume-Guarantee Abstraction Refinement for Probabilistic Systems

  • Anvesh Komuravelli
  • Corina S. Păsăreanu
  • Edmund M. Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7358)


We describe an automated technique for assume-guarantee style checking of strong simulation between a system and a specification, both expressed as non-deterministic Labeled Probabilistic Transition Systems (LPTSes). We first characterize counterexamples to strong simulation as stochastic trees and show that simpler structures are insufficient. Then, we use these trees in an abstraction refinement algorithm that computes the assumptions for assume-guarantee reasoning as conservative LPTS abstractions of some of the system components. The abstractions are automatically refined based on tree counterexamples obtained from failed simulation checks with the remaining components. We have implemented the algorithms for counterexample generation and assume-guarantee abstraction refinement and report encouraging results.


Model Check Probabilistic System Label Transition System Automaton Learning Execution Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habilitation thesis, Fakultät für Mathematik und Informatik, Univ. Mannheim (1998)Google Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)Google Scholar
  3. 3.
    Chadha, R., Viswanathan, M.: A Counterexample-Guided Abstraction-Refinement Framework for Markov Decision Processes. TOCL 12(1), 1–49 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated Assume-Guarantee Reasoning for Simulation Conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chaki, S.J.: A Counterexample Guided Abstraction Refinement Framework for Verifying Concurrent C Programs. PhD thesis, Carnegie Mellon University (2005)Google Scholar
  6. 6.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional Methods for Probabilistic Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 351–365. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Dutertre, B., Moura, L.D.: The Yices SMT Solver. Technical report, SRI International (2006)Google Scholar
  10. 10.
    Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-Based Compositional Verification for Synchronous Probabilistic Systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Feng, L., Kwiatkowska, M., Parker, D.: Automated Learning of Probabilistic Assumptions for Compositional Reasoning. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated Assume-Guarantee Reasoning by Abstraction Refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Learning Probabilistic Systems from Tree Samples. In: LICS (to appear, 2012)Google Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verification for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Milner, R.: An Algebraic Definition of Simulation between Programs. Technical report, Stanford University (1971)Google Scholar
  18. 18.
    Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Programs. In: LMCS. NATO ASI, vol. 13, pp. 123–144. Springer (1985)Google Scholar
  19. 19.
    Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to Divide and Conquer: Applying the L* Algorithm to Automate Assume-Guarantee Reasoning. FMSD 32(3), 175–205 (2008)zbMATHGoogle Scholar
  20. 20.
    Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. Nordic J. of Computing 2(2), 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, L.: Decision Algorithms for Probabilistic Simulations. PhD thesis, Universität des Saarlandes (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anvesh Komuravelli
    • 1
  • Corina S. Păsăreanu
    • 2
  • Edmund M. Clarke
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Carnegie Mellon Silicon Valley, NASA AmesMoffett FieldUSA

Personalised recommendations