Advertisement

Results and Discussion: Biorecognition Processes on Different CNT Platforms

  • Mercè Pacios Pujadó
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The structural requirements of the carbon nanotubes for a better electrochemical performance have been analysed by considering CNT composites. Results have shown that a disposition with high density of edges is important for fast electron transfer. Therefore, the proper construction and orientation of the CNT electrodes will become very important. Consequently, a shift towards different concepts of electrode platforms can be an interesting strategy to follow. Promising alternatives can be the design and development of high density of vertically aligned carbon nanotubes (VACNT) or CNT-forest electrodes, vertically aligned carbon nanotubes microelectrodes (CNT microelectrodes) and ultramicroelectrodes (UMAs). Therefore, in this section we will start evaluating the electrochemical performance of different upright oriented CNT electrodes but also as supports for functionalization and biosensing. Specifically, different iron protein, DNA and aptamer-based sensors will be evaluated. All these studies have been pursued with the final goal of achieving an improvement of sensitivity and selectivity in the biorecognition process.

Keywords

Charge Transfer Resistance Hybridization Process Electron Transfer Rate Constant Ruthenium Species Peak Potential Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Electrochem Commun 5:408–411CrossRefGoogle Scholar
  2. 2.
    Zhao L, Liu H, Hu N (2006) J Colloid Interface Sci 296:204–211CrossRefGoogle Scholar
  3. 3.
    Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997CrossRefGoogle Scholar
  4. 4.
    Zhang L, Zhao G-C, Wei X-W, Yang Z-S (2005) Electroanalysis 17:630–634CrossRefGoogle Scholar
  5. 5.
    Zhao G-C, Zhang L, Wei X-W, Yang Z-S (2003) Electrochem Commun 5:825–829CrossRefGoogle Scholar
  6. 6.
    Zhao G-C, Yin Z–Z, Zhang L, Wei X-W (2005) Electrochem Commun 7:256–260CrossRefGoogle Scholar
  7. 7.
    Nassar A-EF, Zhang Z, Hu N, Rusling JF, Kumosinski TF (1997) J Phys Chem B 101:2224–2231CrossRefGoogle Scholar
  8. 8.
    Zhang H, Hu N (2007) Biosens Bioelectron 23:393–399CrossRefGoogle Scholar
  9. 9.
    Kumar SA, Chen S-M (2007) Talanta 72:831–838CrossRefGoogle Scholar
  10. 10.
    Yan F, Ruan C, Chen X, Deng J, Kong J (1999) Fresenius J Anal Chem 363:83–87CrossRefGoogle Scholar
  11. 11.
    McCreery RL (1991) In: Bard AJ (ed) Electroanalytical chemistry, vol 17. Dekker, New YorkGoogle Scholar
  12. 12.
    Laviron E (1979) J Electroanal Chem Interfacial Electrochem 101:19–28CrossRefGoogle Scholar
  13. 13.
    Li Y, Lin X, Jiang C (2006) Electroanalysis 18:2085–2091CrossRefGoogle Scholar
  14. 14.
    Zhang L, Zhao G-C, Wei X-W, Yang Z-S (2004) Chem Lett 33:86–87CrossRefGoogle Scholar
  15. 15.
    Zhao L, Liu H, Hu N (2006) Anal Bioanal Chem 384:414–422CrossRefGoogle Scholar
  16. 16.
    Nakajima R, Yamazaki I (1987) J Biol Chem 262:2576–2581Google Scholar
  17. 17.
    Onuoha AC, Zu X, Rusling JF (1997) J Am Chem Soc 119:3979–3986CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Chouchane S, Magliozzo RS, Rusling JF (2001) Anal Chem 74:163–170CrossRefGoogle Scholar
  19. 19.
    Fan C, Plaxco KW, Heeger AJ (2003) Proc Natl Acad Sci U S A 100:9134–9137CrossRefGoogle Scholar
  20. 20.
    Pividori MI, Merkoçi A, Alegret S (2003) Biosens Bioelectron 19:473–484CrossRefGoogle Scholar
  21. 21.
    He P, Xu Y, Fang Y (2006) Microchim Acta 152:175–186CrossRefGoogle Scholar
  22. 22.
    He P, Dai L (2004) Aligned carbon nanotube-DNA electrochemical sensors. Chem Commun 3:348–349CrossRefGoogle Scholar
  23. 23.
    Bonanni A, del Valle M (2010) Anal Chim Acta 678:7–17CrossRefGoogle Scholar
  24. 24.
    Bonanni A, Esplandiu MJ, del Valle M (2008) Electrochim Acta 53:4022–4029CrossRefGoogle Scholar
  25. 25.
    Wang J, Li M, Shi Z, Li N, Gu Z (2004) Electroanalysis 16:140–144CrossRefGoogle Scholar
  26. 26.
    Wang J, Kawde A-N, Musameh M (2003) Analyst 128:912–916CrossRefGoogle Scholar
  27. 27.
    Drummond TG, Hill MG, Barton JK (2003) Nat Biotech 21:1192–1199CrossRefGoogle Scholar
  28. 28.
    Gorodetsky AA, Buzzeo MC, Barton JK (2008) Bioconjug Chem 19:2285–2296CrossRefGoogle Scholar
  29. 29.
    Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70:4670–4677CrossRefGoogle Scholar
  30. 30.
    Andreu A, Merkert JW, Lecaros LA, Broglin BL, Brazell JT, El-Kouedi M (2006) Sens Actuators B Chem 114:1116–1120CrossRefGoogle Scholar
  31. 31.
    Siddiqui S, Arumugam PU, Chen H, Li J, Meyyappan M (2010) ACS Nano 4:955–961CrossRefGoogle Scholar
  32. 32.
    Hermann T, Patel DJ (2000) Science 287:820–825CrossRefGoogle Scholar
  33. 33.
    Kawakami J, Imanaka H, Yokota Y, Sugimoto N (2000) J Inorg Biochem 82:197–206CrossRefGoogle Scholar
  34. 34.
    Wang Y, El-Boubbou K, Kouyoumdjian H, Sun B, Huang X, Zeng X (2009) Langmuir 26:4119–4125CrossRefGoogle Scholar
  35. 35.
    Langmuir I (1916) J Am Chem Soc 38:2221–2295CrossRefGoogle Scholar
  36. 36.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  37. 37.
    Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Nature 206:757–761CrossRefGoogle Scholar
  38. 38.
    Barlow GH, Margoliash E (1966) J Biol Chem 241:1473–1477Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mercè Pacios Pujadó
    • 1
  1. 1.Department of ChemistryUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations