Experimental

  • Mercè Pacios Pujadó
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this section we will describe the fabrication process involved in the different carbon-based electrodes and explain how the functionalization for the sensing event is carried out. Special attention will be paid to carbon nanotube working electrodes, which have been developed in various electrode arrangements. Other carbon systems such as Graphite-Epoxy Composites (GEC) will be also built up as a matter of comparison to evaluate the sensor capabilities of carbon nanotube electrodes.

Keywords

Composite Electrode Plasma Enhance Chemical Vapour Deposition Graphite Composite Rapid Thermal Chemical Vapour Deposition Thick Silicon Oxide Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cespedes F, Martinez-Fabregas E, Alegret S (1996) Trends Anal Chem 15:296–304CrossRefGoogle Scholar
  2. 2.
    Bonanni A, Esplandiu M, Pividori M, Alegret S, del Valle M (2006) Anal Bioanal Chem 385:1195–1201CrossRefGoogle Scholar
  3. 3.
    Pumera M, Merkoci A, Alegret S (2006) Sens Actuators B Chem 113:617–622CrossRefGoogle Scholar
  4. 4.
    Wang S (2006) Nanotechnology 17:1551–1557CrossRefGoogle Scholar
  5. 5.
    Martin-Fernandez I, Gabriel G, Rius G, Villa R, Perez-Murano F, Lora-Tamayo E, Godignon P (2009) Microelectron Eng 86:806–808CrossRefGoogle Scholar
  6. 6.
    Martín-Fernández I (2010) Doctoral thesis, Universitat Autònoma de Barcelona, BellaterraGoogle Scholar
  7. 7.
    Zhong G, Iwasaki T, Honda K, Furukawa Y, Ohdomari I, Kawarada H (2005) Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 44:1558–1561Google Scholar
  8. 8.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12:693–713CrossRefGoogle Scholar
  9. 9.
    Deckman HW, Dunsmuir JH (1982) Appl Phys Lett 41:377–379CrossRefGoogle Scholar
  10. 10.
    Giersig M, Mulvaney P (1993) Langmuir 9:3408–3413CrossRefGoogle Scholar
  11. 11.
    Hulteen JC, Van Duyne RP (1995) J Vac Sci Technol A Vac Surf Films 13:1553–1558CrossRefGoogle Scholar
  12. 12.
    Kosiorek A, Kandulski W, Chudzinski P, Kempa K, Giersig M (2004) Nano Lett 4:1359–1363CrossRefGoogle Scholar
  13. 13.
    Tu Y, Huang ZP, Wang DZ, Wen JG, Ren ZF (2002) Appl Phys Lett 80:4018–4020CrossRefGoogle Scholar
  14. 14.
    Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Science 282:1105–1107CrossRefGoogle Scholar
  15. 15.
    Terrones M (2003) Annu Rev Mater Res 33:419–501CrossRefGoogle Scholar
  16. 16.
    Bower C, Zhu W, Jin S, Zhou O (2000) Plasma-induced alignment of carbon nanotubes. Appl Phys Lett 77:830–832CrossRefGoogle Scholar
  17. 17.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Nature 395:878–881CrossRefGoogle Scholar
  18. 18.
    Katz E, Willner I (2004) Angewandte Chemie Int Ed 43:6042–6108Google Scholar
  19. 19.
    Céspedes F, Alegret S (2000) Trends Anal Chem 19:276–285CrossRefGoogle Scholar
  20. 20.
    Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Anal Chem 79:5232–5240CrossRefGoogle Scholar
  21. 21.
    Zacco E, Pividori MI, Llopis X, del Valle M, Alegret S (2004) J Immunol Methods 286:35–46CrossRefGoogle Scholar
  22. 22.
    Besteman K, Lee J-O, Wiertz FGM, Heering HA, Dekker C (2003) Nano Lett 3:727–730Google Scholar
  23. 23.
    Dai H (2002) Acc Chem Res 35:1035–1044Google Scholar
  24. 24.
    Spiridonova V, Rassokhin T, Golovin A, Petrova E, Rohzdestvensky T, Pakhomova Y, Kopylov A (2002) Bioelectrochemistry 56:95–97CrossRefGoogle Scholar
  25. 25.
    Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Anal Chem 76:4066–4075Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mercè Pacios Pujadó
    • 1
  1. 1.Department of ChemistryUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations