Advertisement

Introduction

  • Mercè Pacios Pujadó
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Carbon nanotubes (CNTs) have become one of the most exciting and extensively studied materials of the last two decades. They have captured the interest as nanoscale materials due to their nanometric structure and their impressive list of superlative and outstanding properties. All these ingredients have encouraged their exploitation for promising applications. One of the most interesting ones is related with the use of CNTs as electrochemical platforms for biosensing purposes, the topic in which the present thesis is framed. Accordingly, the main aim of this introductory chapter is to explain the fundamental concepts of the building blocks that constitute this thesis.

Keywords

Carbon Nanotubes Gate Voltage Schottky Barrier Direct Electron Transfer Radial Breathing Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Weiss J, Takhistov P, McClements DJ (2006) J Food Sci 71:R107–R116Google Scholar
  2. 2.
    Oberlin A, Endo M, Koyama T (1976) J Cryst Growth 32:335–349Google Scholar
  3. 3.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163Google Scholar
  4. 4.
    Iijima S (1991) Nature 354:56–58Google Scholar
  5. 5.
    Endo M, Strano M, Ajayan P (2008) In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes, vol 111. Springer, Berlin, pp 13–61Google Scholar
  6. 6.
    Saito R, Dresselhaus G, Dresselhaus MS (eds) (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonGoogle Scholar
  7. 7.
    Louie S (2001) In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes, vol 80. Springer, Berlin, pp 113–145Google Scholar
  8. 8.
    Ouyang M, Huang J-L, Lieber CM (2002) Acc Chem Res 35:1018–1025Google Scholar
  9. 9.
    Avouris P (2002) Acc Chem Res 35:1026–1034Google Scholar
  10. 10.
    Balasubramanian K, Burghard M (2005) Small 1:180–192Google Scholar
  11. 11.
    Wildöer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Nature 391:59–62Google Scholar
  12. 12.
    Odom TW, Huang JL, Kim P, Lieber CM (1998) Nature 391:62–64Google Scholar
  13. 13.
    Krstić V, Roth S, Burghard M (2000) Phys Rev B 62:R16353Google Scholar
  14. 14.
    Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Phys Rev Lett 87:106801Google Scholar
  15. 15.
    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Phys Rev Lett 89:106801Google Scholar
  16. 16.
    Hamon MA, Itkis ME, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon RC (2001) J Am Chem Soc 123:11292–11293Google Scholar
  17. 17.
    Han J (2005) In: Meyyappan M (ed) Carbon nanotubes: science and applications. CRC Press, London, p 1Google Scholar
  18. 18.
    Srivastava D (2005) In: Meyyappan M (ed) Carbon nanotubes: science and applications. CRC Press, London, p 25Google Scholar
  19. 19.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501–503Google Scholar
  20. 20.
    Roh S, Lee J, Jang M (2010) J Nanomater 2010:6Google Scholar
  21. 21.
    Liew KM, He XQ, Wong CH (2004) Acta Mater 52:2521–2527Google Scholar
  22. 22.
    Duplock EJ, Scheffler M, Lindan PJD (2004) Phys Rev Lett 92:225502Google Scholar
  23. 23.
    Picozzi S, Santucci S, Lozzi L, Valentini L, Delley B (2004) J Chem Phys 120:7147–7152Google Scholar
  24. 24.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications, vol 80. Springer, BerlinGoogle Scholar
  25. 25.
    Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K, Iijima S (2007) Nat Nano 2:358–360Google Scholar
  26. 26.
    Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro LL (1999) Phys Rev Lett 82:944Google Scholar
  27. 27.
    Cornwell CF, Wille LT (1997) Solid State Commun 101:555–558Google Scholar
  28. 28.
    Ruoff RS, Lorents DC (1995) Carbon 33:925–930Google Scholar
  29. 29.
    Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552Google Scholar
  30. 30.
    Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637–640Google Scholar
  31. 31.
    Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng, A 334:173–178Google Scholar
  32. 32.
    Shen W, Jiang B, Han BS, Xie S–S (2000) Phys Rev Lett 84:3634Google Scholar
  33. 33.
    Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD (2007) Toxicol Sci 100:203–214Google Scholar
  34. 34.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Acc Chem Res 35:1105–1113Google Scholar
  35. 35.
    Chen Z, Thiel W, Hirsch A (2003) ChemPhysChem 4:93–97Google Scholar
  36. 36.
    Burghard M (2005) Surf Sci Rep 58:1–109Google Scholar
  37. 37.
    McCreery RL (2008) Chem Rev 108:2646–2687Google Scholar
  38. 38.
    McCreery RL (1991) In: Bard AJ (ed) Electroanalytical chemistry, vol 17. Dekker, New York, 1991Google Scholar
  39. 39.
    Merkoçi A (2006) Microchim Acta 152:157–174Google Scholar
  40. 40.
    Wang J (2005) Electroanalysis 17:7–14Google Scholar
  41. 41.
    Pumera M, Sánchez S, Ichinose I, Tang J (2007) Sens Actuators B Chem 123:1195–1205Google Scholar
  42. 42.
    Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Anal Chim Acta 622:11–47Google Scholar
  43. 43.
    Heller I, Kong J, Williams KA, Dekker C, Lemay SG (2006) J Am Chem Soc 128:7353–7359Google Scholar
  44. 44.
    Gooding JJ, Wibowo R, Liu JQ, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) J Am Chem Soc 125:9006–9007Google Scholar
  45. 45.
    Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Nano Lett 1:87–91Google Scholar
  46. 46.
    Moore RR, Banks CE, Compton RG (2004) Anal Chem 76:2677–2682Google Scholar
  47. 47.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 7:829–841Google Scholar
  48. 48.
    Banks CE, Compton RG (2006) Analyst 131:15–21Google Scholar
  49. 49.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187–214Google Scholar
  50. 50.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem Int Ed 45:2533–2537Google Scholar
  51. 51.
    Gooding JJ (2005) Electrochim Acta 50:3049–3060Google Scholar
  52. 52.
    Gooding JJ, Lai LMH, Goon IY (2009) In: Alkire RC et al (eds) Chemically modified electrodes. Wiley-VCH, Weinheim, pp 1–56Google Scholar
  53. 53.
    Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Electrochem Commun 5:408–411Google Scholar
  54. 54.
    Banks CE, Ji X, Crossley A, Compton RG (2006) Electroanalysis 18:2137–2140Google Scholar
  55. 55.
    Chou A, Böcking T, Singh NK, Gooding JJ (2005) Chem Commun 7:842–844Google Scholar
  56. 56.
    Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Science 300:783–786Google Scholar
  57. 57.
    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P (2005) Science 310:1171–1174Google Scholar
  58. 58.
    Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Nano Lett 3:1067–1071Google Scholar
  59. 59.
    Itkis ME, Borondics F, Yu A, Haddon RC (2006) Science 312:413–416Google Scholar
  60. 60.
    Star A, Lu Y, Bradley K, Grüner G (2004) Nano Lett 4:1587–1591Google Scholar
  61. 61.
    Miyauchi Y, Oba M, Maruyama S (2006) Phys Rev B 74:205440Google Scholar
  62. 62.
    Iakoubovskii K, Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B (2006) Appl Phys Lett 89:173108-3Google Scholar
  63. 63.
    Dresselhaus MS, Dresselhaus G, Jorio A (2007) J Phys Chem C 111:17887–17893Google Scholar
  64. 64.
    Heller DA, Barone PW, Swanson JP, Mayrhofer RM, Strano MS (2004) J Phys Chem B 108:6905–6909Google Scholar
  65. 65.
    Oron-Carl M, Hennrich F, Kappes MM, Löhneysen HV, Krupke R (2005) Nano Lett 5:1761–1767Google Scholar
  66. 66.
    Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) J Am Chem Soc 127:15437–15445Google Scholar
  67. 67.
    Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes, vol 111. Springer, Berlin, pp 101–164Google Scholar
  68. 68.
    Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang S-L (2000) J Phys Chem Solids 61:1031–1036Google Scholar
  69. 69.
    Moravsky AP, Wexler EM, Loutfy RO (2005) In: Meyyappan M (ed) Carbon nanotubes: science and applications. CRC Press, London, p 65Google Scholar
  70. 70.
    Meyyappan M (2005) In: Meyyappan M (ed) Carbon nanotubes: science and applications. CRC Press, London, p 99Google Scholar
  71. 71.
    Dai H (2002) Surf Sci 500:218–241Google Scholar
  72. 72.
    Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Chem Phys Lett 260:471–475Google Scholar
  73. 73.
    Veronese GP, Rizzoli R, Angelucci R, Cuffiani M, Malferrari L, Montanari A, Odorici F (2007) Phys E Low-Dim Syst Nanostruct 37:21–25Google Scholar
  74. 74.
    Kondo D, Sato S, Awano Y (2006) Chem Phys Lett 422:481–487Google Scholar
  75. 75.
    Song IK, Cho YS, Choi GS, Park JB, Kim DJ (2004) Diamond Relat Mater 13:1210–1213Google Scholar
  76. 76.
    Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2000) Appl Phys Lett 77:2767–2769Google Scholar
  77. 77.
    Meyyappan M et al (2003) Plasma Sources Sci Technol 12:205Google Scholar
  78. 78.
    Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K (1994) Nature 367:519Google Scholar
  79. 79.
    Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2002) Carbon 40:985–988Google Scholar
  80. 80.
    Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodríguez-Macías FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Appl Phys A Mater Sci Process 67:29–37Google Scholar
  81. 81.
    Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G (2002) Acc Chem Res 35:1045–1053Google Scholar
  82. 82.
    Andrews R, Jacques D, Qian D, Rantell T (2002) Acc Chem Res 35:1008–1017Google Scholar
  83. 83.
    Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) Adv Mater 11:1354–1358Google Scholar
  84. 84.
    Jurkschat K, Ji X, Crossley A, Compton RG, Banks CE (2007) Analyst 132:21–23Google Scholar
  85. 85.
    Pumera M (2007) Langmuir 23:6453–6458Google Scholar
  86. 86.
    Jones CP, Jurkschat K, Crossley A, Compton RG, Riehl BL, Banks CE (2007) Langmuir 23:9501–9504Google Scholar
  87. 87.
    Swain GM (2006) In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, London, pp 431–469Google Scholar
  88. 88.
    Millan KM, Spurmanis AJ, Mikkelsen SR (1992) Electroanalysis 4:929–932Google Scholar
  89. 89.
    Kang J, Li X, Wu G, Wang Z, Lu X (2007) Anal Biochem 364:165–170Google Scholar
  90. 90.
    Tian Y, Mao L, Okajima T, Ohsaka T (2005) Biosens Bioelectron 21:557–564Google Scholar
  91. 91.
    Wang J, Cai X, Rivas G, Shiraishi H, Farias PAM, Dontha N (1996) Anal Chem 68:2629–2634Google Scholar
  92. 92.
    Millan KM, Saraullo A, Mikkelsen SR (1994) Anal Chem 66:2943–2948Google Scholar
  93. 93.
    Atanasov P, Kaisheva A, Iliev I, Razumas V, Kulys J (1992) Biosens Bioelectron 7:361–365Google Scholar
  94. 94.
    Liu S, Ye J, He P, Fang Y (1996) Anal Chim Acta 335:239–243Google Scholar
  95. 95.
    Karadeniz H, Erdem A, Caliskan A, Pereira CM, Pereira EM, Ribeiro JA (2007) Electrochem Commun 9:2167–2173Google Scholar
  96. 96.
    Pividori MI, Alegret S (2003) Anal Lett 36:1669–1695Google Scholar
  97. 97.
    Santandreu M, Céspedes F, Alegret S, Martínez-Fàbregas E (1997) Anal Chem 69:2080–2085Google Scholar
  98. 98.
    Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Sens Actuators B Chem 124:269–276Google Scholar
  99. 99.
    Wang SG, Zhang Q, Wang R, Yoon SF (2003) Biochem Biophys Res Commun 311:572–576Google Scholar
  100. 100.
    Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481–4483Google Scholar
  101. 101.
    Levicky R, Herne TM, Tarlov MJ, Satija SK (1998) J Am Chem Soc 120:9787–9792Google Scholar
  102. 102.
    Paleček E (1996) Electroanalysis 8:7–14Google Scholar
  103. 103.
    Rampi MA, Schueller OJA, Whitesides GM (1998) Appl Phys Lett 72:1781–1783Google Scholar
  104. 104.
    Bryant MA, Pemberton JE (1991) J Am Chem Soc 113:8284–8293Google Scholar
  105. 105.
    Tammeveski K, Kikas T, Tenno T, Niinistö L (1998) Sens Actuators B Chem 47:21–29Google Scholar
  106. 106.
    Burke LD, Lyons MFG (1986) In: White RE, Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 18. Plenum, New York, pp 169–248Google Scholar
  107. 107.
    O’Sullivan EJM, Calvo EJ (1987) In: Compton RG (ed) Comprehensive chemical kinetics, vol 27. Elsevier, Amsterdam, Chap 3Google Scholar
  108. 108.
    Albery WJ, Bartlett PN (1984) J Chem Soc Chem Commun 4:234–236Google Scholar
  109. 109.
    Brett CMA, Brett AMO (eds) (1993) Electrochemistry: principles, methods, and applications. Oxford Press, OxfordGoogle Scholar
  110. 110.
    von Sturm F (1988) Angew Chem 100:1260–1261Google Scholar
  111. 111.
    Ruschan GR, Newnham RE, Runt J, Smith E (1989) Sens Actuators 20:269Google Scholar
  112. 112.
    Esplandiu MJ, Baeza M, Olive-Monllau R, Cespedes F, Bartroli J (2011) In: Attaf B (ed) Advances in composite materials for medicine and nanotechnology. InTech, CroatiaGoogle Scholar
  113. 113.
    Godovski DY, Koltypin EA, Volkov AV, Moskvina MA (1993) Analyst 118:997–999Google Scholar
  114. 114.
    Céspedes F, Martinez-Fàbregas E, Alegret S (1996) Trends Anal Chem 15:296–304Google Scholar
  115. 115.
    Céspedes F, Martínez-Fàbregas E, Alegret S (1993) Anal Chim Acta 284:21–26Google Scholar
  116. 116.
    Céspedes F, Martínez-Fàbregas E, Bartrolí J, Alegret S (1993) Anal Chim Acta 273:409–417Google Scholar
  117. 117.
    Pividori MI, Merkoçi A, Alegret S (2003) Biosens Bioelectron 19:473–484Google Scholar
  118. 118.
    Wang J, Musameh M (2003) Anal Chem 75:2075–2079Google Scholar
  119. 119.
    Zhang M, Smith A, Gorski W (2004) Anal Chem 76:5045–5050Google Scholar
  120. 120.
    Mendoza Gómez E, Orozco J, Jiménez-Jorquera C, González-Guerrero AB, Calle Martín A, Lechuga LM, Fernández Sánchez C (2008) Nanotechnology 19:75102Google Scholar
  121. 121.
    Sánchez S, Pumera M, Fàbregas E (2007) Biosens Bioelectron 23:332–340Google Scholar
  122. 122.
    Pacios M, del Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619–620:117–124Google Scholar
  123. 123.
    Pumera M, Merkoçi A, Alegret S (2006) Sens Actuators B Chem 113:617–622Google Scholar
  124. 124.
    Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L (2005) Anal Sci 21:1383–1393Google Scholar
  125. 125.
    Gavalas VG, Law SA, Ball JC, Andrews R, Bachas LG (2004) Anal Biochem 329:247–252Google Scholar
  126. 126.
    Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J (2011) Nanoscale Res Lett 6:431Google Scholar
  127. 127.
    Sainz R, Benito AM, Martínez MT, Galindo JF, Sotres J, Baró AM, Corraze B, Chauvet O, Maser WK (2005) Adv Mater 17:278–281Google Scholar
  128. 128.
    Huang J, Li X, Xu J, Li H (2003) Carbon 41:2731–2736Google Scholar
  129. 129.
    Guo M, Chen J, Li J, Tao B, Yao S (2005) Anal Chim Acta 532:71–77Google Scholar
  130. 130.
    Terzic S, Tripkovic D, Jovanovic VM, Tripkovic A, Kowal A (2007) J Serb Chem Soc 72:165–181Google Scholar
  131. 131.
    Jenkins GM, Kawamura K (1971) Nature 231:175–176Google Scholar
  132. 132.
    Milchev A, Zapryanova T (2006) Electrochim Acta 51:4916–4921Google Scholar
  133. 133.
    Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S (2005) Trends Anal Chem 24:826–838Google Scholar
  134. 134.
    Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997Google Scholar
  135. 135.
    Lawrence NS, Deo RP, Wang J (2005) Electroanalysis 17:65–72Google Scholar
  136. 136.
    Heng LY, Chou A, Yu J, Chen Y, Gooding JJ (2005) Electrochem Commun 7:1457–1462Google Scholar
  137. 137.
    Li J, Cassell A, Delzeit L, Han J, Meyyappan M (2002) J Phys Chem B 106:9299–9305Google Scholar
  138. 138.
    Koehne J, Li J, Cassell AM, Chen H, Ye Q, Ng HT, Han J, Meyyappan M (2004) J Mater Chem 14:676–684Google Scholar
  139. 139.
    Li J, Koehne JE, Cassell AM, Chen H, Ng HT, Ye Q, Fan W, Han J, Meyyappan M (2005) Electroanalysis 17:15–27Google Scholar
  140. 140.
    Lin Y, Lu F, Tu Y, Ren Z (2003) Nano Lett 4:191–195Google Scholar
  141. 141.
    Martin-Fernandez I, Gabriel G, Rius G, Villa R, Perez-Murano F, Lora-Tamayo E, Godignon P (2009) Microelectron Eng 86:806–808Google Scholar
  142. 142.
    Zoski CG (2002) Electroanalysis 14:1041–1051Google Scholar
  143. 143.
    Heinze J (1993) Angew Chem Int Ed Engl 32:1268–1288Google Scholar
  144. 144.
    Arrigan DWM (2004) Analyst 129:1157–1165Google Scholar
  145. 145.
    Fiaccabrino GC, Koudelka-Hep M, Jeanneret S, van den Berg A, de Rooij NF (1994) Sens Actuators B Chem 19:675–677Google Scholar
  146. 146.
    Orozco J, Fernández-Sánchez C, Jiménez-Jorquera C (2010) Sensors 10:475–490Google Scholar
  147. 147.
    Morf WE, de Rooij NF (1997) Sens Actuators B Chem 44:538–541Google Scholar
  148. 148.
    Belmont C, Tercier ML, Buffle J, Fiaccabrino GC, Koudelka-Hep M (1996) Anal Chim Acta 329:203–214Google Scholar
  149. 149.
    Baker WS, Crooks RM (1998) J Phys Chem B 102:10041–10046Google Scholar
  150. 150.
    Ugo P, Moretto LM, Vezzà F (2002) ChemPhysChem 3:917–925Google Scholar
  151. 151.
    Artigas J, Jimenez C, Lemos SG, Nogueira ARA, Torre-Neto A, Alonso J (2003) Sens Actuators B Chem 88:337–344Google Scholar
  152. 152.
    Galán-Vidal CA, Muñoz J, Domínguez C, Alegret S (1997) Sens Actuators B Chem 45:55–62Google Scholar
  153. 153.
    Jessica K et al (2003) Nanotechnology 14:1239Google Scholar
  154. 154.
    Gruner G (2006) Anal Bioanal Chem 384:322–335Google Scholar
  155. 155.
    Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49–52Google Scholar
  156. 156.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Appl Phys Lett 73:2447–2449Google Scholar
  157. 157.
    Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773–2775Google Scholar
  158. 158.
    Cid C (2009) Doctoral thesis. Universitat Rovira i Virgili, TarragonaGoogle Scholar
  159. 159.
    Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340–1344Google Scholar
  160. 160.
    Yun YH, Shanov V, Schulz MJ, Narasimhadevara S, Subramaniam S, Hurd D, Boerio FJ (2005) Smart Mater Struct 14:1526–1532Google Scholar
  161. 161.
    Yun Y, Shanov V, Tu Y, Schulz MJ, Yarmolenko S, Neralla S, Sankar J, Subramaniam S (2006) Nano Lett 6:689–693Google Scholar
  162. 162.
    Hirsch A (2002) Angew Chem Int Ed 41:1853–1859Google Scholar
  163. 163.
    Han W, Fan S, Li Q, Hu Y (1997) Science 277:1287–1289Google Scholar
  164. 164.
    Sloan J, Hammer J, Zwiefka-Sibley M, Green MLH (1998) Chem Commun 3:347–348Google Scholar
  165. 165.
    Dujardin E, Ebbesen TW, Krishnan A, Treacy MMJ (1998) Adv Mater 10:1472–1475Google Scholar
  166. 166.
    Matsui K, Pradhan BK, Kyotani T, Tomita A (2001) J Phys Chem B 105:5682–5688Google Scholar
  167. 167.
    Govindaraj A, Satishkumar BC, Nath M, Rao CNR (1999) Chem Mater 12:202–205Google Scholar
  168. 168.
    Wilson M, Madden PA (2001) J Am Chem Soc 123:2101–2102Google Scholar
  169. 169.
    Smith BW, Monthioux M, Luzzi DE (1999) Chem Phys Lett 315:31–36Google Scholar
  170. 170.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136Google Scholar
  171. 171.
    Yang WR, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Nanotechnology 18:412001Google Scholar
  172. 172.
    Katz E, Willner I (2004) ChemPhysChem 5:1084–1104Google Scholar
  173. 173.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Adv Mater 19:3214–3228Google Scholar
  174. 174.
    Yin Y, Lü Y, Wu P, Cai C (2005) Sensors 5:220–234Google Scholar
  175. 175.
    Li Y, Lin X, Jiang C (2006) Electroanalysis 18:2085–2091Google Scholar
  176. 176.
    Wang L, Wang J, Zhou F (2004) Electroanalysis 16:627–632Google Scholar
  177. 177.
    Zhao L, Liu H, Hu N (2006) J Colloid Interface Sci 296:204–211Google Scholar
  178. 178.
    Du P, Liu S, Wu P, Cai C (2007) Electrochim Acta 52:6534–6547Google Scholar
  179. 179.
    Zhang L, Zhao G-C, Wei X-W, Yang Z-S (2005) Electroanalysis 17:630–634Google Scholar
  180. 180.
    Zhang L, Zhao G-C, Wei X-W, Yang Z-S (2004) Chem Lett 33:86–87Google Scholar
  181. 181.
    Zhao G-C, Zhang L, Wei X-W, Yang Z-S (2003) Electrochem Commun 5:825–829Google Scholar
  182. 182.
    Zhao G-C, Yin Z–Z, Zhang L, Wei X-W (2005) Electrochem Commun 7:256–260Google Scholar
  183. 183.
    Yin Y, Wu P, Lü Y, Du P, Shi Y, Cai C (2007) J Solid State Electrochem 11:390–397Google Scholar
  184. 184.
    Nelson DL, Lenin MMC (eds) (2000) Principles in biochemistry. Worth Publishers, New York, p 175Google Scholar
  185. 185.
    Roat-Malone RM (ed) (2002) Bioinorganic chemistry. Wiley, New York, pp 158–185Google Scholar
  186. 186.
    Fita I, Rossmann MG (1985) J Mol Biol 185:21–37Google Scholar
  187. 187.
    Murphy L (2006) Curr Opin Chem Biol 10:177–184Google Scholar
  188. 188.
    Armstrong FA, Wilson GS (2000) Electrochim Acta 45:2623–2645Google Scholar
  189. 189.
    Murthy MRN, Reid TJ, Sicignano A, Tanaka N, Rossmann MG (1981) J Mol Biol 152:465–499Google Scholar
  190. 190.
    Jouve H-M, Gouet P, Boudjada N, Buisson G, Kahn R, Duee E (1991) J Mol Biol 221:1075–1077Google Scholar
  191. 191.
    Carot ML, Torresi RM, Garcia CD, Esplandiu MJ, Giacomelli CE (2010) J Phys Chem C 114:4459–4465Google Scholar
  192. 192.
    He P, Xu Y, Fang Y (2006) Microchim Acta 152:175–186Google Scholar
  193. 193.
    Drummond TG, Hill MG, Barton JK (2003) Nat Biotech 21:1192–1199Google Scholar
  194. 194.
    Wang J, Li M, Shi Z, Li N, Gu Z (2004) Electroanalysis 16:140–144Google Scholar
  195. 195.
    Wang J, Kawde A-N, Musameh M (2003) Analyst 128:912–916Google Scholar
  196. 196.
    Fan C, Plaxco KW, Heeger AJ (2003) Proc Nat Acad Sci U S A 100:9134–9137Google Scholar
  197. 197.
    He P, Dai L (2004) Chem Commun 10:348–349Google Scholar
  198. 198.
    Bonanni A, del Valle M (2010) Anal Chim Acta 678:7–17Google Scholar
  199. 199.
    Bonanni A, Esplandiu MJ, del Valle M (2008) Electrochim Acta 53:4022–4029Google Scholar
  200. 200.
    Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L, Fischer AB, Gudibande SR, Jameison SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ (2003) Adv Mater 15:1184–1187Google Scholar
  201. 201.
    Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Electroanalysis 21:1237–1250Google Scholar
  202. 202.
    Jayasena SD (1999) Clin Chem 45:1628–1650Google Scholar
  203. 203.
    Ellington AD, Szostak JW (1990) Nature 346:818–822Google Scholar
  204. 204.
    Doudna JA, Cech TR, Sullenger BA (1995) Proc Nat Acad Sci U S A 92:2355–2359Google Scholar
  205. 205.
    Lee S-W, Sullenger BA (1997) Nat Biotechnol 15:41–45Google Scholar
  206. 206.
    Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) Nature 419:90–94Google Scholar
  207. 207.
    Rusconi CP, Yeh A, Lyerly HK, Lawson JH, Sullenger BA (2000) J Thromb Haemost 84:841–848Google Scholar
  208. 208.
    Stoltenburg R, Reinemann C, Strehlitz B (2007) Biomol Eng 24:381–403Google Scholar
  209. 209.
    Hamula CLA, Guthrie JW, Zhang HQ, Li XF, Le XC (2006) Trends Anal Chem 25:681–691Google Scholar
  210. 210.
    Nimjee SM, Rusconi CP, Sullenger BA (2005) Annu Rev Med 56:555–583Google Scholar
  211. 211.
    O’Sullivan C (2002) Anal Bioanal Chem 372:44–48Google Scholar
  212. 212.
    Wang H, Yang R, Yang L, Tan W (2009) ACS Nano 3:2451–2460Google Scholar
  213. 213.
    Wang Z, Lu Y (2009) J Mater Chem 19:1788–1798Google Scholar
  214. 214.
    Di Cera E (2008) Mol Aspects Med 29:203–254Google Scholar
  215. 215.
    Fenton JW, Landis BH, Walz DA, Finlayson JS (1977) In: Lundblad RL, Fenton JW, Mann KG (eds) Chemistry and biology of thrombin. Ann Arbor Science Publishers, Michigan, pp 43–70Google Scholar
  216. 216.
    Lombardi A, De Simone G, Galdiero S, Staiano N, Nastri F, Pavone V (1999) Pept Sci 51:19–39Google Scholar
  217. 217.
    Petrera NS, Stafford AR, Leslie BA, Kretz CA, Fredenburgh JC, Weitz JI (2009) J Biol Chem 284:25620–25629Google Scholar
  218. 218.
    Tegos TJ, Kalodiki E, Daskalopoulou S–S, Nicolaides AN (2000) Angiology 51:793–808Google Scholar
  219. 219.
    Chiu T-C, Huang C–C (2009) Sensors 9:10356–10388Google Scholar
  220. 220.
    Rodríguez MC, Rivas GA (2009) Talanta 78:212–216Google Scholar
  221. 221.
    Huang J, Wu L, Yalda D, Adkins Y, Kelleher SL, Crane M, Lonnerdal B, Rodriguez RL, Huang N (2002) Transgenic Res 11:229–239Google Scholar
  222. 222.
    Wan Y, Lu J, Cui Z (2006) Sep Purif Technol 48:133–142Google Scholar
  223. 223.
    Ireland J, Herzog J, Unanue ER (2006) J Immunol 177:1421–1425Google Scholar
  224. 224.
    Daniels JS, Pourmand N (2007) Electroanalysis 19:1239–1257Google Scholar
  225. 225.
    Lin Y, Allard LF, Sun Y-P (2004) J Phys Chem B 108:3760–3764Google Scholar
  226. 226.
    Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H (2002) Nano Lett 2:285–288Google Scholar
  227. 227.
    Beyer M, Felgenhauer T, Bischoff F, Breitling F, Stadler V (2006) Biomaterials 27:3505–3514Google Scholar
  228. 228.
    Chen ES, Chen ECM (1998) Bioelectrochem Bioenerg 46:15–19Google Scholar
  229. 229.
    Martínez MT, Tseng Y-C, Ormategui N, Loinaz I, Eritja R, Bokor J (2009) Nano Lett 9:530–536Google Scholar
  230. 230.
    Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H (2004) J Am Chem Soc 126:1563–1568Google Scholar
  231. 231.
    Star A, Gabriel J-CP, Bradley K, Grüner G (2003) Nano Lett 3:459–463Google Scholar
  232. 232.
    Lee S-W, Laibinis PE (1998) Biomaterials 19:1669–1675Google Scholar
  233. 233.
    Ruiz-Taylor LA, Martin TL, Zaugg FG, Witte K, Indermuhle P, Nock S, Wagner P (2001) Proc Nat Acad Sci U S A 98:852–857Google Scholar
  234. 234.
    Claesson PM, Blomberg E, Fröberg JC, Nylander T, Arnebrant T (1995) Adv Colloid Interface Sci 57:161–227Google Scholar
  235. 235.
    Wang RLC, Kreuzer HJ, Grunze M (1997) J Phys Chem B 101:9767–9773Google Scholar
  236. 236.
    Kissinger PT, Heineman WR (1983) J Chem Educ 60:702Google Scholar
  237. 237.
    Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70:4670–4677Google Scholar
  238. 238.
    Mansfeld F, Han LT, Lee CC, Chen C, Zhang G, Xiao H (1997) Corros Sci 39:255–279Google Scholar
  239. 239.
    Srisuwan N, Ochoa N, Pébère N, Tribollet B (2008) Corros Sci 50:1245–1250Google Scholar
  240. 240.
    Sagüés AA, Wolan JT, Fex AD, Fawcett TJ (2006) Electrochim Acta 51:1656–1663Google Scholar
  241. 241.
    Sosa E, Cabrera-Sierra R, Oropeza MT, Hernandez F, Casillas N, Tremont R, Cabrera C, Gonzalez I (2003) Electrochim Acta 48:1665–1674Google Scholar
  242. 242.
    Tzvetkov B, Bojinov M, Girginov A, Pébère N (2007) Electrochim Acta 52:7724–7731Google Scholar
  243. 243.
    Nogueira A, Nóvoa XR, Pérez C (2007) Prog Org Coat 59:186–191Google Scholar
  244. 244.
    Wagner N (2005) In: Barsukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment and applications. Wiley, New YorkGoogle Scholar
  245. 245.
    Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) Bioelectrochemistry 72:149–154Google Scholar
  246. 246.
    Roy SK, Orazem ME (2008) J Power Sour 184:212–219Google Scholar
  247. 247.
    Amstrong RD, Bel MF, Metcalfe AA (1978) Electrochemistry 6:98–127Google Scholar
  248. 248.
    Seland F, Tunold R, Harrington DA (2006) Electrochim Acta 51:3827–3840Google Scholar
  249. 249.
    Kharitonov AB, Alfonta L, Katz E, Willner I (2000) J Electroanal Chem 487:133–141Google Scholar
  250. 250.
    Vladikova D, Raikova G, Stoynov Z, Takenouti H, Kilner J, Skinner S (2005) Solid State Ion 176:2005–2009Google Scholar
  251. 251.
    Kell DB, Davey CL (1990) In: Cass AEG (ed) Biosensors: a practical approach. IRL Press, OxfordGoogle Scholar
  252. 252.
    Berggren C, Bjarnason B, Johansson G (2001) Electroanalysis 13:173–180Google Scholar
  253. 253.
    Gabrielli C (ed) (1990) Use and application of electrochemical impedance techniques. Solartron analytical, FarnboroughGoogle Scholar
  254. 254.
    Sluyters-Rehbach M, Sluyters JH (eds) (1970) Electroanalytical chemistry. Dekker, New YorkGoogle Scholar
  255. 255.
    Katz E, Willner I (2003) Electroanalysis 15:913–947Google Scholar
  256. 256.
    Macdonald JR (ed) (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley-Interscience, New YorkGoogle Scholar
  257. 257.
    Liu SH (1985) Phys Rev Lett 55:529Google Scholar
  258. 258.
    Heer F, Franks W, Blau A, Taschini S, Ziegler C, Hierlemann A, Baltes H (2004) Biosens Bioelectron 20:358–366Google Scholar
  259. 259.
    Bates JB, Chu YT, Stribling WT (1988) Phys Rev Lett 60:627Google Scholar
  260. 260.
    Kerner Z, Pajkossy T (2000) Electrochim Acta 46:207–211Google Scholar
  261. 261.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622–625Google Scholar
  262. 262.
    Bradley K, Briman M, Star A, Grüner G (2004) Nano Lett 4:253–256Google Scholar
  263. 263.
    Heller I, Janssens AM, Mannik J, Minot ED, Lemay SG, Dekker C (2007) Nano Lett 8:591–595Google Scholar
  264. 264.
    Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2006) Anal Chem 79:782–787Google Scholar
  265. 265.
    Esplandiu MJ (2005) Contributions Sci 3:33–46Google Scholar
  266. 266.
    Goldstein JI et al. (eds) (1992) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New YorkGoogle Scholar
  267. 267.
    Flewitt PEJ, Wild RK (eds) (1994) Physical methods for materials characterization. Institute of Physics Publishing, LondonGoogle Scholar
  268. 268.
    Reimer L, Kohl H (eds) (2008) Transmission electron microscopy: physics of image formation. Springer Science, BerlinGoogle Scholar
  269. 269.
    Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Surf Sci Lett 290:L688–L692Google Scholar
  270. 270.
    Cardiner DJ, Graves PR (eds) (1989) Practical Raman spectroscopy. Springer, BerlinGoogle Scholar
  271. 271.
    Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Phys Rev Lett 86:1118Google Scholar
  272. 272.
    Rafailov PM, Stoll M, Thomsen C (2004) J Phys Chem B 108:19241–19245Google Scholar
  273. 273.
    Anglaret E, Dragin F, Pénicaud A, Martel R (2006) J Phys Chem B 110:3949–3954Google Scholar
  274. 274.
    Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) J Phys Chem B 110:9850–9855Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mercè Pacios Pujadó
    • 1
  1. 1.Department of ChemistryUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations