Skip to main content

Reconstruction Algorithms and Scanning Geometries in Tomographic Imaging

  • Chapter
  • First Online:
Imaging in Nuclear Medicine

Abstract

In general tomographic imaging consists of two steps: the acquisition of data and the reconstruction. Thereby the following triple problem has to be solved: choose an efficient reconstruction algorithm, identify the optimal sampling conditions imposed on measured data as required by this reconstruction algorithm, and find an efficient way of collecting such data in the practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, \( \hat{\varphi}(\omega )\approx 0 \) if \( \omega \in [-w,w] \) .

  2. 2.

    Polynomial \( P \) of degree \( n \) is orthogonal on \( \mathrm{ D} \) with respect to the weight function \( \mu \) if \( \int_{\mathrm{ D}} {P(x,y)Q(x,y)\mu (x,y)\mathrm{ d}x\mathrm{ d}y} =0 \) for any polynomial \( Q \) of degree less than \( n \).

  3. 3.

    That is, \( ||{A_n}f-f|{|_2}=\mathop{\min}\limits_{{g\in \boldsymbol{ \Pi}_n^2}}||g-f|{|_2} \) .

  4. 4.

    In this case, the output of acquisition system is the convolution with the impulse response of the ideal filter.

  5. 5.

    Clearly, if \( z\ne 0 \), then for different \( \alpha \), there are different planes that contain this point, so that all planes of projections that contribute to the reconstruction at given \( {\rm\bf r} \) may be visualized as forming a bundle.

References

  1. Matej S, Lewitt RM (1996) Practical consideration for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging 15:68–78

    Article  PubMed  CAS  Google Scholar 

  2. Higgins JR (1996) Sampling theory in Fourier and signal analysis: foundations. Oxford University, New York, NY

    Google Scholar 

  3. Petersen DP, Middleton D (1962) Sampling and reconstruction of wave-number limited functions in N-dimensional Euclidean spaces. Inf Control 5:279–323

    Article  Google Scholar 

  4. Schwartz L (1950–1951) Théorie des distributions, 1–2. Hermann

    Google Scholar 

  5. Gelfand IM, Shilov GE (1964) Generalized functions, vol I. Academic, New York, NY

    Google Scholar 

  6. Kak A, Slaney M (2001) Principles of computerized tomographic imaging. SIAM, Philadelphia, PA

    Book  Google Scholar 

  7. Rattey PA, Lindgren AG (1981) Sampling the 2-D Radon transform. IEEE Trans Acoust Speech Signal Process ASSP-29:994–1002

    Article  Google Scholar 

  8. Natterer F (1986) The mathematics of computerized tomography. Wiley, Chichester

    Google Scholar 

  9. Faridani A, Ritman EL (2000) High-resolution computed tomography from efficient sampling. Inverse Probl 16:635–650

    Article  Google Scholar 

  10. Lewitt RM, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91:1588–1611

    Article  Google Scholar 

  11. Herman GT, Lakshminarayanan AV, Naparstek A (1976) Convolution reconstruction techniques for divergent beams. Comput Biol Med 6:259–274

    Article  PubMed  CAS  Google Scholar 

  12. Lakshminarayanan AV (1975) Reconstruction from divergent ray data. Department of Computer Science technical report TR-92, State University of New York, Buffalo, NY

    Google Scholar 

  13. Natterer F (1993) Sampling in fan beam tomography. SIAM J Appl Math 53(2):358–380

    Article  Google Scholar 

  14. Marr RB (1974) On the reconstruction of a function on a circular domain from a sampling of its line integrals. J Math Anal Appl 45:357–374

    Article  Google Scholar 

  15. Davison ME (1981) A singular value decomposition for the Radon transform in n-dimensional Euclidean space. Numer Funct Anal Optim 3(3):321–340

    Article  Google Scholar 

  16. Lisin FS (1976) Conditions for the completeness of the system of polynomials. Math Notes18(4):891–894

    Article  Google Scholar 

  17. Xu Y (2006) A new approach to the reconstruction of images from Radon projections. Adv Appl Math 36:388–420

    Article  Google Scholar 

  18. Xu Y, Tischenko O, Hoeschen C. A new reconstruction algorithm for Radon data. Proceedings of SPIE, vol 6142. Medical imaging 2006: physics of medical imaging, pp 791–798

    Google Scholar 

  19. Hakopian H (1982) Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J Approx Theory 34:286–305

    Article  Google Scholar 

  20. Tischenko O, Xu Y, Hoeschen C (2010) Main features of the tomographic reconstruction algorithm OPED. Radiat Prot Dosimetry 139(1–3):204–207, Advance Access publication 12 Feb 2010

    Article  PubMed  CAS  Google Scholar 

  21. Noo F, Clackdoyle R, Pack JD (2004) A two-step Hilbert transform method for 2D image reconstruction. Phys Med Biol 49:3903–3023

    Article  PubMed  Google Scholar 

  22. Mikhlin SG (1957) Integral equations and their applications to certain problems in mechanics, mathematical physics and technology. Pergamon, New York

    Google Scholar 

  23. Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43:546–552

    Article  Google Scholar 

  24. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1(6):612–619

    Article  Google Scholar 

  25. Wang G, Lin T-H, Cheng PC (1993) A general cone-beam reconstruction algorithm. IEEE Trans Med Imaging 12:486–496

    Article  PubMed  CAS  Google Scholar 

  26. Turbell H (2001) Ph.D. Thesis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Tischenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Tischenko, O., Hoeschen, C. (2013). Reconstruction Algorithms and Scanning Geometries in Tomographic Imaging. In: Giussani, A., Hoeschen, C. (eds) Imaging in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31415-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31415-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31414-8

  • Online ISBN: 978-3-642-31415-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics