Tomographic and Hybrid Imaging in Nuclear Medicine

Chapter

Abstract

An overview of the instrumentation used in nuclear medicine is provided, with a special focus on the increasing use of hybrid imaging.

Keywords

Positron Emission Tomography Attenuation Correction Positron Emission Tomography Scanner Positron Emission Tomography Data SPECT System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks Isabel Dregely, Ph.D. and Shelley Zhang, Ph.D., for assistance in the final preparation of the manuscript.

References

  1. 1.
    Blumgart HL, Yens OC (1927) Studies on the velocity of blood flow: I. The method utilized. J Clin Invest 4:1–12PubMedCrossRefGoogle Scholar
  2. 2.
    Loong CY, Anagnostopoulos C (2004) Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart 90(Suppl V):v2–v9PubMedCrossRefGoogle Scholar
  3. 3.
    Kapur A, Latus KA, Davies G et al (2002) A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging 29:1608–1616PubMedCrossRefGoogle Scholar
  4. 4.
    Underwood SR, Anagnostopoulos C, Cerqueira M et al (2004) Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 31:261–291PubMedCrossRefGoogle Scholar
  5. 5.
    Sciagra R, Pellegri M, Pupi A, Bolognese L, Bisi G, Carnovale V, Santoro GM (2000) Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 36:739–745PubMedCrossRefGoogle Scholar
  6. 6.
    Camici PG, Prasad SK, Rimoldi OE (2008) Stunning, hibernation, and assessment of myocardial viability. Circulation 117:103–114PubMedCrossRefGoogle Scholar
  7. 7.
    Holman BL, Tumeh SS (1990) Single-photon emission computed tomography (SPECT) applications and potential. JAMA 263:561–564PubMedCrossRefGoogle Scholar
  8. 8.
    Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61PubMedCrossRefGoogle Scholar
  9. 9.
    Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663PubMedCrossRefGoogle Scholar
  10. 10.
    Eisner RL, Nowak DJ, Pettigrew R, Fajman W (1986) Fundamentals of 180 degree acquisition and reconstruction in SPECT imaging. J Nucl Med 27:1717–1728PubMedGoogle Scholar
  11. 11.
    Moore SC, Kouris K, Cullum I (1992) Collimator design for single photon emission tomography. Eur J Nucl Med 19:138–150PubMedCrossRefGoogle Scholar
  12. 12.
    Cullom SJ, Case JA, Bateman MD (1998) Electrocardiographically gated myocardial perfusion SPECT: technical principles and quality control considerations. J Nucl Cardiol 5:418–425PubMedCrossRefGoogle Scholar
  13. 13.
    Paul AK, Nabi HA (2004) Gated myocardial perfusion SPECT: basic principles, technical aspects, and clinical applications. J Nucl Med Technol 32:179–187PubMedGoogle Scholar
  14. 14.
    Cho K, Kumiata SI, Okada S, Kumazaki T (1999) Development of respiratory gated myocardial SPECT system. J Nucl Cardiol 6:20–28PubMedCrossRefGoogle Scholar
  15. 15.
    Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF (2010) Dynamic single photon emission computed tomography—basic principles and cardiac applications. Phys Med Biol 55:R111–R191PubMedCrossRefGoogle Scholar
  16. 16.
    Cao Z, Maunoury C, Chen CC, Holder LE (1996) Comparison of continuous step-and-shoot versus step-and-shoot acquisition SPECT. J Nucl Med 37:2037–2040PubMedGoogle Scholar
  17. 17.
    Gottschalk SC, Salem D, Lim CB, Wake RH (1983) SPECT resolution and uniformity improvements by noncircular orbit. J Nucl Med 24:822–828PubMedGoogle Scholar
  18. 18.
    Todd-Pokropek A (1983) Non-circular orbits for the reduction of uniformity artefacts in SPECT. Phys Med Biol 28:309–313PubMedCrossRefGoogle Scholar
  19. 19.
    Beekman F, van der Have F (2007) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161PubMedCrossRefGoogle Scholar
  20. 20.
    Funk T, Després P, Barber WC, Shah KS, Hasegawa BH (2006) A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 33:1259–1268PubMedCrossRefGoogle Scholar
  21. 21.
    van der Have F, Vastenhouw B, Ramakers RM et al (2009) U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 50:599–605PubMedCrossRefGoogle Scholar
  22. 22.
    Bateman TM, Cullom SJ (2005) Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med 35:37–51PubMedCrossRefGoogle Scholar
  23. 23.
    Bruyant PP (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43:1343–1358PubMedGoogle Scholar
  24. 24.
    Sharir T, Slomkam PJ, Bermanm DS (2010) Solid-state SPECT technology: fast and furious. J Nucl Cardiol 17:890–896PubMedCrossRefGoogle Scholar
  25. 25.
    Gambhir SS, Berman DS, Ziffer J (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50:635–643PubMedCrossRefGoogle Scholar
  26. 26.
    Erlandsson K, Kacpersk K, van Gramberg D, Hutton BF (2009) Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol 54:2635–2649PubMedCrossRefGoogle Scholar
  27. 27.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L (2010) A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 37:1887–1902PubMedCrossRefGoogle Scholar
  28. 28.
    Strauss LG (1997) Positron emission tomography: current role for diagnosis and therapy monitoring in oncology. Oncologist 2:381–388PubMedGoogle Scholar
  29. 29.
    Bomanji JB, Costa DC, Ell PJ (2001) The clinical role of positron emission tomography. Lancet Oncol 3:157–64CrossRefGoogle Scholar
  30. 30.
    Basu S, Alavi A (2008) Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. J Nucl Med 49:17N–21NPubMedCrossRefGoogle Scholar
  31. 31.
    Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508PubMedCrossRefGoogle Scholar
  32. 32.
    Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895PubMedGoogle Scholar
  33. 33.
    Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49:24S–42SPubMedCrossRefGoogle Scholar
  34. 34.
    Kumar R, Dhanpathi H, Basu S, Rubello D, Fanti S, Alavi A (2008) Oncologic PET tracers beyond [18F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 52:50–65PubMedGoogle Scholar
  35. 35.
    Bengel FM, Higuchi T, Javadi MS, Lautamäki R (2009) Cardiac positron emission tomography. J Am Coll Cardiol 54:1–15PubMedCrossRefGoogle Scholar
  36. 36.
    Tai YF, Piccini P (2004) Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry 75:669–676PubMedCrossRefGoogle Scholar
  37. 37.
    Nanni C, Rubello D, Fanti S (2007) Role of small animal PET for molecular imaging in pre-clinical studies. Eur J Nucl Med Mol Imaging 34:1819–1822PubMedCrossRefGoogle Scholar
  38. 38.
    Casey ME, Nutt RA (1986) A multicrystal, two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463CrossRefGoogle Scholar
  39. 39.
    Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN (1996) Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 41:1755–1776PubMedCrossRefGoogle Scholar
  40. 40.
    Bailey DL (2003) Data acquisition and performance characterization in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. Springer, London, pp 41–62Google Scholar
  41. 41.
    Dahlbom M, Yu DC, Cherry SR, Chatziioannou A, Hoffman EJ (1992) Methods for improving image quality in whole body PET scanning. IEEE Trans Nucl Sci 39:1079–1083CrossRefGoogle Scholar
  42. 42.
    Dahlbom M, Reed J, Young J (2001) Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning. IEEE Trans Nucl Sci 48:1465–1469CrossRefGoogle Scholar
  43. 43.
    Meikle SR, Badawi RD (2003) Quantitative techniques in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. Springer, London, pp 41–62Google Scholar
  44. 44.
    Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876–881PubMedGoogle Scholar
  45. 45.
    Martinez-Möller A, Zikic D, Botnar R et al (2007) Dual cardiac-respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 34:1447–1454PubMedCrossRefGoogle Scholar
  46. 46.
    Kaufmann PA, Camici PG (2005) Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 46:75–88PubMedGoogle Scholar
  47. 47.
    Conti M (2011) Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 38:1147–1157PubMedCrossRefGoogle Scholar
  48. 48.
    Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36:69–85CrossRefGoogle Scholar
  49. 49.
    Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter R, Schmitz A, Ballizany R (2009) The digital silicon photomultiplier—a novel sensor for the detection of scintillation light. IEEE Nucl Sci Symp Conf Rec 2383–2386Google Scholar
  50. 50.
    Ben-Haim S, Kacperski K, Hain S et al (2010) Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 37:1710–1721PubMedCrossRefGoogle Scholar
  51. 51.
    Germano G, Slomka PJ, Berman DS (2007) Attenuation correction in cardiac SPECT: the boy who cried wolf? J Nucl Cardiol 14:25–35PubMedCrossRefGoogle Scholar
  52. 52.
    Alavi A, Basu S (2008) Planar and SPECT imaging in the era of PET and PET–CT: can it survive the test of time? Eur J Nucl Med Mol Imaging 35:1554–1559PubMedCrossRefGoogle Scholar
  53. 53.
    Jansen FP, Vanderheyden JL (2007) The future of SPECT in a time of PET. Nucl Med Biol 34:733–735PubMedCrossRefGoogle Scholar
  54. 54.
    Gholamrezanehad A, Mirpour S, Mariani G (2009) Future of nuclear medicine: SPECT versus PET. J Nucl Med 50:16N–18NGoogle Scholar
  55. 55.
    Mariani G, Strauss HW (2011) Positron emission and single-photon emission imaging: synergy rather than competition. Eur J Nucl Med Mol Imaging 38:1189–90PubMedCrossRefGoogle Scholar
  56. 56.
    Schad LR, Boesecke R, Schiegel W et al (1987) Three-dimensional image correlation of CT, MR and PET studies in radiotherapy treatment planning of brain tumors. J Comput Assist Tomogr 11:948–954PubMedCrossRefGoogle Scholar
  57. 57.
    Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT (1989) Accurate three-dimensional registration of CT, PET and/or MR images of the brain. J Comput Assist Tomogr 13:20–26PubMedCrossRefGoogle Scholar
  58. 58.
    Ito K, Kato T, Tadokoro M, Ishiguchi T, Oshima M, Ishigaki T, Sakuma S (1992) Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 182:549–552PubMedGoogle Scholar
  59. 59.
    Hasegawa BH, Stebler B, Rutt BK et al (1991) A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging. Med Phys 18:900–909PubMedCrossRefGoogle Scholar
  60. 60.
    Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, Gingold EL, Cann CE (1992) Description of a prototype emission transmission computed tomography imaging system. J Nucl Med 33:1881–1887PubMedGoogle Scholar
  61. 61.
    Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379PubMedGoogle Scholar
  62. 62.
    Patton JA, Delbeke D, Sandler MP (2000) Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med 41:1364–1368PubMedGoogle Scholar
  63. 63.
    Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75:24–30Google Scholar
  64. 64.
    Even-Sapir E, Keidar Z, Bar-Shalom R (2009) Hybrid imaging (SPECT/CT and PET/CT)—improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med 39:264–275PubMedCrossRefGoogle Scholar
  65. 65.
    Delbeke D, Schöder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 39:308–340PubMedCrossRefGoogle Scholar
  66. 66.
    Martinez-Möller A (2009) Challenges in multimodality imaging using positron emission tomography. Ph.D. Dissertation, Technische Universität München, GermanyGoogle Scholar
  67. 67.
    Fischman AJ, Thrall JH (2003) Who should read and interpret 18F-FDG PET studies? J Nucl Med 44:1197–1199PubMedGoogle Scholar
  68. 68.
    Bischof Delaloye A, Carrió I, Cuocolo A et al (2007) White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging. Eur J Nucl Med Mol Imaging 34:1147–1151PubMedCrossRefGoogle Scholar
  69. 69.
    Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 45(Suppl):56–65Google Scholar
  70. 70.
    Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927PubMedCrossRefGoogle Scholar
  71. 71.
    Souvatzoglou M, Bengel F, Busch R, Kruschke C, Fernolendt H, Lee D, Schwaiger M, Nekolla SG (2007) Attenuation correction in cardiac PET/CT with three different CT protocols: a comparison with conventional PET. Eur J Nucl Med Mol Imaging 34:1991–2000PubMedCrossRefGoogle Scholar
  72. 72.
    Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053PubMedCrossRefGoogle Scholar
  73. 73.
    Goerres GW, Ziegler SI, Burger C, Berthold T, von Schulthess GK, Buck A (2003) Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 226:577–584PubMedCrossRefGoogle Scholar
  74. 74.
    Mawlawi O, Erasmus JJ, Munden RF et al (2006) Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. Am J Roentgenol 186:308–319CrossRefGoogle Scholar
  75. 75.
    Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596PubMedCrossRefGoogle Scholar
  76. 76.
    Martinez-Möller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG (2007) Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 48:188–193PubMedGoogle Scholar
  77. 77.
    Czernin J, Allen-Auerbach M, Schelbert H (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78–88Google Scholar
  78. 78.
    Römer W, Nomayr A, Uder M, Bautz W, Kuwert T (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47:1102–1106PubMedGoogle Scholar
  79. 79.
    Buck AK, Nekolla SG, Ziegler SI et al (2008) SPECT/CT. J Nucl Med 49:1305–1319PubMedCrossRefGoogle Scholar
  80. 80.
    Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985PubMedCrossRefGoogle Scholar
  81. 81.
    Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238:264–271PubMedCrossRefGoogle Scholar
  82. 82.
    Tharp K, Israel O, Hausmann J et al (2004) Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 31:1435–1442PubMedCrossRefGoogle Scholar
  83. 83.
    Lavely WC, Goetze S, Friedman KP et al (2007) Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase 99mTc-sestamibi parathyroid scintigraphy. J Nucl Med 48:1084–1089PubMedCrossRefGoogle Scholar
  84. 84.
    Gayed IW, Kim EE, Broussard WF et al (2005) The value of 99mTc-sestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia. J Nucl Med 46:248–252PubMedGoogle Scholar
  85. 85.
    Hammer BE, Christensen NL, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920PubMedCrossRefGoogle Scholar
  86. 86.
    Raylman RR, Hammer BE, Christensen NL (1996) Combined MRI-PET scanner: a Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field. IEEE Trans Nucl Sci 43:2406–2412CrossRefGoogle Scholar
  87. 87.
    Shao Y, Cherry SR, Farahani K et al (1997) Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44:1167–1171CrossRefGoogle Scholar
  88. 88.
    Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465PubMedCrossRefGoogle Scholar
  89. 89.
    Eiber M, Martinez-Möller A, Souvatzoglou M et al (2011) Value of a Dixon based MR-PET attenuation correction sequence for the localization and evaluation of PET positive lesions. Eur J Nucl Med Mol Imaging 38:1691–1701PubMedCrossRefGoogle Scholar
  90. 90.
    Brix G, Nekolla EA, Nosske D, Griebel J (2009) Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging 36(Suppl 1):131–138CrossRefGoogle Scholar
  91. 91.
    Rota Kops E, Herzog HR (2008) Template-based attenuation correction of PET in hybrid MR-PET [abstract]. J Nucl Med 49(Suppl):162PGoogle Scholar
  92. 92.
    Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883PubMedCrossRefGoogle Scholar
  93. 93.
    Martinez-Möller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526PubMedCrossRefGoogle Scholar
  94. 94.
    Schulz V, Torres-Espallardo I, Renisch S et al (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152PubMedCrossRefGoogle Scholar
  95. 95.
    Delso G, Martinez-Möller A, Bundschuh R, Nekolla SG, Ziegler SI (2010) The effect of limited MR field of view in MR/PET attenuation correction. Med Phys 37:2804–2812PubMedCrossRefGoogle Scholar
  96. 96.
    Delso G, Martinez-Möller A, Bundschuh R, Ladebeck R, Candidus Y, Faul D, Ziegler SI (2010) Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 55:4361–4374PubMedCrossRefGoogle Scholar
  97. 97.
    Heiss W-D (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):105–112CrossRefGoogle Scholar
  98. 98.
    Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36(Suppl 1):113–120CrossRefGoogle Scholar
  99. 99.
    Nekolla SG, Martinez-Möller A, Saraste A (2009) PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 36(Suppl 1):121–130CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany
  2. 2.European Patent OfficeMunichGermany

Personalised recommendations