Skip to main content

Physics of Imaging in Nuclear Medicine

  • Chapter
  • First Online:
Imaging in Nuclear Medicine

Abstract

Imaging in nuclear medicine has become an established part of standard medical practice for recognition and treatment of a wide variety of medical disorders. This chapter gives a compact overview of the physics that governs such imaging algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming Gaussian distribution of each parameter. This is most notably not true for the distribution of positron range: however, its contribution is generally small and the resulting deviation irrelevant.

References

  1. Holzwarth U (2011) Radiopharmaceutical production. In: Cantone MC, Hoeschen C (eds) Radiation physics for nuclear medicine. Springer, Berlin, pp 71–103

    Chapter  Google Scholar 

  2. Veronese I (2011) Scintillators and semiconductor detectors. In: Cantone MC, Hoeschen C (eds) Radiation physics for nuclear medicine. Springer, Berlin, pp 161–174

    Chapter  Google Scholar 

  3. Knoll GF (1999) Radiation detection and measurement, 3rd edn. Wiley, New York, NY

    Google Scholar 

  4. van Loef EVD, Dorenbos P, van Eijk CWE, Krmer KW, Gdel HU (2002) Scintillation properties of labr3:ce3+ crystals: fast, efficient and high-energy-resolution scintillators. Nucl Instrum Methods Phys Res A 486:254–258

    Article  Google Scholar 

  5. Locker RJ, Huth GC (1966) A new ionizing radiation detection concept which employs semiconductor avalanche amplification and the tunnel diode element. Appl Phys Lett 9:227–230

    Article  CAS  Google Scholar 

  6. Bondarenko G, Buzhan P, Dolgoshein B, Golovin V, Guschin E, Ilyin A, Kaplin V, Karakash A, Klanner R, Pokachalov V, Popova E, Smirnov K (2000) Limited Geiger-mode microcell silicon photodiode: new results. Nucl Instrum Methods Phys Res A 442:187–192

    Article  CAS  Google Scholar 

  7. Straver J, Toker O, Weilhammer P, Colledani C, Dulinski W, Turchetta R, Bosisio L (1994) One micron resolution with silicon strip detectors. Nucl Instrum Methods Phys Res A 348:485–490

    Article  CAS  Google Scholar 

  8. Llosa G, Bernabeu J, Burdette D, Chesi E, Clinthorne NH, Honscheid K, Kagan H, Lacasta C, Mikuz M, Modesto P, Rogers WL, Studen A, Weilhammer P (2008) Last results of a first Compton probe demonstrator. IEEE Trans Nucl Sci 55(3):936–941

    Article  CAS  Google Scholar 

  9. Meier D, Wagenaar DJ, Chen S, Xu J, Yu J, Tsui BMW (2011) A SPECT camera for combined MRI and SPECT for small animals. Nuclear Instrum Methods Phys Res A 652(1):731–734, ISSN 0168-9002, 10.1016/j.nima.2010.09.116

    Article  CAS  Google Scholar 

  10. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27–33

    Article  CAS  Google Scholar 

  11. Barrett HH, Hunter WCJ, Miller BW, Moore SK, Chen Y, Furenlid LR (2009) Maximum-likelihood methods for processing signals from gamma-ray detectors. IEEE Trans Nucl Sci 56:725–735

    Article  PubMed  Google Scholar 

  12. Tavernier S, Bruyndonckx P, Leonard S, Devroede O (2005) A high-resolution pet detector based on continuous scintillators. Nucl Instrum Methods Phys Res A 537(1–2):321–325. Proceedings of the 7th international conference on inorganic scintillators and their use in scientific and industrial applications

    Google Scholar 

  13. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine, 3rd edn. Saunders, Philadelphia, PA

    Google Scholar 

  14. Kim JS, Lee JS, Im KC, Kim SJ, Kim S-Y, Lee DS, Moon DH (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48(9):1527–1535

    Article  PubMed  Google Scholar 

  15. Park S-J, Rogers WL, Huh S, Kagan H, Honscheid K, Burdette D, Chesi E, Lacasta C, Llosá G, Mikuž M, Studen A, Weilhammer P, Clinthorne NH (2007) Performance evaluation of a very high resolution small animal pet imager using silicon scatter detectors. Phys Med Biol 52(10):2807

    Article  PubMed  Google Scholar 

  16. Choong W-S (2009) The timing resolution of scintillation-detector systems: Monte Carlo analysis. Phys Med Biol 54(21):6495

    Article  PubMed  Google Scholar 

  17. Tabacchini V, Mettivier G, Conti M, Russo P (2010) Improvement in signal-to-noise ratio at variable random fraction in TOF pet. IEEE nuclear science symposium conference record (NSS/MIC)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Studen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Studen, A. (2013). Physics of Imaging in Nuclear Medicine. In: Giussani, A., Hoeschen, C. (eds) Imaging in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31415-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31415-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31414-8

  • Online ISBN: 978-3-642-31415-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics