Image Magnification with PET Insert Probe

Chapter

Abstract

This chapter will describe the development of a PET probe based on solid-state detectors. The PET probe concept combines the high spatial resolution of dedicated PET imaging devices with the large field of view of the standard PET scanners. This is achieved by placing an additional movable detector within the standard PET ring and combining standard events with those captured by the probe. The probe must exhibit excellent spatial resolution and be of compact, sturdy design, making solid-state detectors a compelling choice over scintillator-based materials. Although silicon may not be perfectly suited in terms of stopping power and timing resolution, its other characteristics make it a compelling choice for the probe construction. This chapter will give an overview on probe construction, characterization, and performance as well as outline the limiting aspects of the described approach.

Keywords

Field Programmable Gate Array Positron Annihilation Ring Event Silicon Detector External Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480PubMedGoogle Scholar
  2. 2.
    Jakoby BW, Bercier Y, Conti M, Casey M, Gremillion T, Hayden C, Bendriem B, Townsend DW (2008) Performance investigation of a time-of-flight PET/CT scanner. In: IEEE nuclear science symposium conference record, Oct 2008, pp 3738–3743Google Scholar
  3. 3.
    Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, Jones WF, Knoess C, Lenox M, Lercher M, Luk P, Michel C, Reed JH, Richerzhagen N, Treffert J, Vollmar S, Young JW, Heiss WD, Nutt R (2002) The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 49(1):104–110CrossRefGoogle Scholar
  4. 4.
    Kim JS, Lee JS, Im KC, Kim SJ, Kim S-Y, Lee DS, Moon DH (2007) Performance measurement of the microPET focus 120 scanner. J Nucl Med 48(9):1527–1535PubMedCrossRefGoogle Scholar
  5. 5.
    Clinthorne NH, Park S, Wilderman SJ, Rogers WL (2001) High resolution PET detector. J Nucl Med 42(5):383Google Scholar
  6. 6.
    Meng LJ, Clinthorne NH (2004) A modified uniform cramer-rao bound for multiple pinhole aperture design. IEEE Trans Med Imaging 23(7):896–902PubMedCrossRefGoogle Scholar
  7. 7.
    Oehr P, Bouchelouche K (2007) Imaging of prostate cancer. Curr Opin Oncol 19:259–264PubMedCrossRefGoogle Scholar
  8. 8.
    Ragde H, Kenny GM, Murphy GP, Landin K (1997) Transrectal ultrasound microbubble contrast angiography of the prostate. Prostate 32(4):279–283PubMedCrossRefGoogle Scholar
  9. 9.
    Metzger GJ, van de Moortele P-F, Akgun C, Snyder CJ, Moeller S, Strupp J, Andersen P, Shrivastava D, Vaughan T, Ugurbil K, Adriany G (2010) Performance of external and internal coil configurations for prostate investigations at 7 t. Magn Reson Med 64(6):1625–1639PubMedCrossRefGoogle Scholar
  10. 10.
    Tai YC, Wu H, Pal D, O’Sullivan J (2008) Virtual-pinhole PET. J Nucl Med 49(3):471–479PubMedCrossRefGoogle Scholar
  11. 11.
    Yin Y, Komarov S, Wu H, Song TY, Li Q, Garson A, Lee K, Simburger P, Dowkontt P, Krawczynski H, Tai YC (2009). Characterization of highly pixelated czt detectors for sub-millimeter pet imaging. In: IEEE nuclear science symposium conference record (NSS/MIC), pp 2411–2414Google Scholar
  12. 12.
    Straver J, Toker O, Weilhammer P, Colledani C, Dulinski W, Turchetta R, Bosisio L (1994) One micron resolution with silicon strip detectors. Nucl Instrum Methods Phys Res A 348(2–3):485–490CrossRefGoogle Scholar
  13. 13.
    Studen A, Burdette D, Chesi E, Cindro V, Clinthorne NH, Cochran E, Grošičar B, Kagan H, Lacasta C, Linhart V, Mikuž M, Stankova V, Weilhammer P, Žontar D (2010) Timing performance of the silicon PET insert probe. Radiat Prot Dosimetry 139:199–203PubMedCrossRefGoogle Scholar
  14. 14.
    Burdette D, Albani D, Chesi E, Clinthorne NH, Cochran E, Honscheid K, Huh SS, Kagan H, Knopp M, Lacasta C, Mikuz M, Schmalbrock P, Studen A, Weilhammer P (2009) A device to measure the effects of strong magnetic fields on the image resolution of pet scanners. Nucl Instrum Methods Phys Res A 609(2–3):263–271CrossRefGoogle Scholar
  15. 15.
    Gamma Medica-Ideas, Inc. (Norway). http://www.gm-ideas.com. Martin Linges vei 25, Snarøya, POB 1, N-1330 Fornebu, Norway, Tel: +47-6782-7171
  16. 16.
    Stankova V, Lacasta C, Linhart V, Llosa G, Burdette D, Cindro V, Cochran E, Chesi E, Clinthorne NH, Grosicar B, Honscheid K, Huh S, Kagan H, Mikuz M, Solaz C, Studen A, Weilhammer P, Zontar D (2010) An fpga based daq system for the readout of madeira pet probe. In: IEEE nuclear science symposium conference record, 2010. NSS’10Google Scholar
  17. 17.
    Xilinx, Inc. http://www.xilinx.com. 2100 Logic Drive, San Jose, CA 95124-3400
  18. 18.
    Studen A, Chesi E, Cindro V, Clinthorne NH, Cochran E, Grosicar B, Honscheid K, Kagan H, Lacasta C, Llosa G, Linhart V, Mikuz M, Stankova V, Weilhammer P, Zontar D (2010) A silicon pet probe. Nucl Instrum Methods Phys Res A 648(Suppl 1):S255–S258Google Scholar
  19. 19.
    Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRefGoogle Scholar
  20. 20.
    CAEN, S.p.a. http://www.caen.it. Via Vetraia, 11, 55049 Viareggio (LU) Italy. Tel.: +39.0584.388.398

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations