Advertisement

The EURATOM FP7 Collaborative Project MADEIRA

  • Augusto Giussani
  • Marcus Söderberg
Chapter

Abstract

The European research project MADEIRA (Minimizing Activities and Doses by Enhancing Imaging quality in Radiopharmaceutical Administration), co-funded by the European Commission through the EURATOM Seventh Research Framework Program (January 2008–December 2010), was aimed at developing several strategies to improve the imaging process and thus enable to reduce the radiation dose to the patients, while keeping the diagnostic information of the image at the same level, or even enhancing it. In this chapter, two achievements of the projects are presented; specifically the development of new algorithms for image reconstruction and noise reduction and the conception and fabrication of a specific phantom for evaluation of spatial resolution in PET and SPECT imaging.

Keywords

Compress Sense Partial Volume Effect Scientific Visualizer Nuclear Medicine Imaging Enhance Image Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Gernot Ebel for useful comments and suggestions during the preparation of this contribution.

References

  1. 1.
    Hoeschen C, Mattsson S, Cantone MC, Mikuz M, Lacasta C, Ebel G, Clinthorne N, Giussani A (2010) Minimizing activity and dose with enhanced image quality by radiopharmaceutical administrations (MADEIRA). Radiat Prot Dosimetry 139:250–253PubMedCrossRefGoogle Scholar
  2. 2.
    Sydoff M, Uusijärvi H, Leide-Svegborn S, Mattsson S (2010) Absolute quantification of activity content from PET images using the Philips Gemini TF PET/CT system. Radiat Prot Dosimetry 139:236–239PubMedCrossRefGoogle Scholar
  3. 3.
    Janzen T, Tavola F, Giussani A, Cantone MC, Uusijärvi H, Mattsson S, Zankl M, Petoussi-Henß N, Hoeschen C (2010) Compartmental model of 18F-choline. SPIE Meeting, San Diego, CAGoogle Scholar
  4. 4.
    Uusijärvi H, Nilsson L-E, Bjartell A, Mattsson S (2010) Biokinetics of 18F-choline studied in four prostate cancer patients. Radiat Prot Dosimetry 139:240–244PubMedCrossRefGoogle Scholar
  5. 5.
    Tavola F, Janzen T, Giussani A, Facchinetti D, Veronese I, Uusijärvi-Lizana H, Mattsson S, Hoeschen C, Cantone MC (2012) Nonlinear compartmental model of 18F-choline. Nucl Med Biol 39:261–268PubMedCrossRefGoogle Scholar
  6. 6.
    Giussani A, Janzen T, Uusijärvi-Lizana H, Tavola F, Zankl M, Sydoff M, Bjartell A, Leide-Svegborn S, Söderberg M, Mattsson S, Hoeschen C, Cantone MC (2012) A compartmental model fpr biokinetics and dosimetry of 18F-choline in prostate cancer patients. J Nucl Med 53(6):985–993PubMedCrossRefGoogle Scholar
  7. 7.
    Li W, Hoeschen C (2010) Uncertainty and sensitivity analysis of biokinetic models for radiopharmaceuticals used in nuclear medicine. Radiat Prot Dosimetry 139:228–231PubMedCrossRefGoogle Scholar
  8. 8.
    Linhart V, Burdette D, Chessi E, Cindro V, Clinthorne NH, Cochran E, Grošičar B, Honscheid K, Kagan H, Lacasta C, Llosá G, Mikuž M, Stankova V, Weilhammer P, Žontar D (2011) Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips. J Inst 6:C01092CrossRefGoogle Scholar
  9. 9.
    Studen A, Burdette D, Chesi E, Cindro V, Clinthorne NH, Cochran E, Grošičar B, Honscheid K, Kagan H, Lacasta C, Llosá G, Linhart V, Mikuž M, Stankova V, Weilhammer P, Žontar D (2009) Performance of the MADEIRA PET probe prototype. 2009 NSS/MIC IEEE conference, Orlando, FLGoogle Scholar
  10. 10.
    Studen A, Burdette D, Chesi E, Cindro V, Clinthorne NH, Cochran E, Grošičar B, Kagan H, Lacasta C, Linhart V, Mikuž M, Stankova V, Weilhammer P, Žontar D (2010) Timing performance of the silicon PET insert probe. Radiat Prot Dosimetry 139:199–203PubMedCrossRefGoogle Scholar
  11. 11.
    Brzezinski K, Gillan J, Oliver JF, Lacasta C, Rafecas M (2011) Multiple resolution PET data: image properties using the list-mode ML-EM reconstruction algorithm. 11th international meeting on fully 3D image reconstruction in radiology and nuclear medicine, Potsdam, GermanyGoogle Scholar
  12. 12.
    Tischenko O, Xu Y, Hoeschen C (2010) Main features of the tomographic reconstruction algorithm OPED. Radiat Prot Dosimetry 139:204–207PubMedCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Aspelmeier T, Ebel G, Hoeschen Ch. Tomographic imaging using Poissonian detector data. International Patent Application PCT/EP2010/000526Google Scholar
  15. 15.
    Tischenko O, Hoeschen C, Buhr E (2005) An artifact-free structure saving noise reduction using the correlation between two images for threshold determination in the wavelet domain. In: Fitzpatrick JM, Reinhardt JM (eds) Medical imaging 2005: image processing. Proc SPIE 5747:1066–1075Google Scholar
  16. 16.
    Towers JD, Holbert JM, Britton CA, Costello P, Sciulli R et al (2000) Multipoint rank-order study methodology: observer issues. Invest Radiol 35:125–130PubMedCrossRefGoogle Scholar
  17. 17.
    Good WF, Sumkin JH, Dash N, Johns CM, Zuley ML et al (1999) Observer sensitivity to small differences: a multipoint rank-order experiment. Am J Roentgenol 173:275–278CrossRefGoogle Scholar
  18. 18.
    Söderberg M, Mattsson S, Oddstig J, Uusijärvi-Lizana H, Valind S, Thorsson O, Garpered S, Prautzsch T, Tischenko O, Leide-Svegborn S (2012) Evaluation of image reconstruction methods for 123I-MIBG-SPECT: a rank-order study. Revision requested by Acta RadiolGoogle Scholar
  19. 19.
    Hawman E, Vija AH, Daffach R, Ray M (2003) Flash 3D technology optimizing SPECT quality and accuracy. Whitepaper. Siemens Medical Solutions, Forchheim, Germany, pp 1–6Google Scholar
  20. 20.
    Scivis GmbH (2006) ReSPECT – technical description. Version 2.0. Scivis, Gottingen, Germany, pp 1–27Google Scholar
  21. 21.
    Xu Y, Tischenko O, Hoeschen C (2007) Image reconstruction by OPED algorithm with averaging. Numer Algorithms 45:179–193CrossRefGoogle Scholar
  22. 22.
    Xu Y, Tischenko O, Hoeschen C (2006) A new reconstruction algorithm for radon data. Proc SPIE 6142:791–798Google Scholar
  23. 23.
    Jaszczak PET/SPECT Phantom. http://www.coneinstruments.com
  24. 24.
    Data Spectrum Corporation NEMA IEC Body Phantom SetTM. http://www.spect.com
  25. 25.
    Hoffman EJ, Cutler PD, Digby WM, Mazziotta JC (1990) 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci 37:616–620CrossRefGoogle Scholar
  26. 26.
    DiFilippo FP, Price JP, Kelsch DN, Muzic RF Jr (2004) Porous phantom for PET and SPECT performance evaluation and quality assurance. Med Phys 31:1183–1194PubMedCrossRefGoogle Scholar
  27. 27.
    RSD Alderson heart/thorax phantom. http://www.rsdphantoms.com
  28. 28.
    Siemens Medical Solutions 2005 Symbia TruePoint SPECT/CT system specifications. http://www.medical.siemens.com
  29. 29.
    Söderberg M, Engeland U, Mattsson S, Ebel G, Leide-Svegborn S (2011) Initial test of a new phantom for investigation of spatial resolution, partial volume effect and detectability in nuclear medicine tomography. Proc J Phys Conf Ser 317:012017CrossRefGoogle Scholar
  30. 30.
    Skretting A (2009) ‘Intensity diffusion’ is a better description than ‘partial volume effect’. Eur J Nucl Med Mol Imaging 36:536–537PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Unit Medical Radiation Physics and DiagnosticsHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Department of Radiation Protection and HealthBfS – Federal Office for Radiation ProtectionOberschleißheimGermany
  3. 3.Department of Clinical Sciences, Medical Radiation Physics MalmöLund University, Skåne University HospitalMalmöSweden

Personalised recommendations