Impossible Differential Cryptanalysis of the Lightweight Block Ciphers TEA, XTEA and HIGHT

  • Jiazhe Chen
  • Meiqin Wang
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7374)

Abstract

TEA, XTEA and HIGHT are lightweight block ciphers with 64-bit block sizes and 128-bit keys. The round functions of the three ciphers are based on the simple operations XOR, modular addition and shift/rotation. TEA and XTEA are Feistel ciphers with 64 rounds designed by Needham and Wheeler, where XTEA is a successor of TEA, which was proposed by the same authors as an enhanced version of TEA. HIGHT, which is designed by Hong et al., is a generalized Feistel cipher with 32 rounds. These block ciphers are simple and easy to implement but their diffusion is slow, which allows us to find some impossible properties.

This paper proposes a method to identify the impossible differentials for TEA and XTEA by using the weak diffusion, where the impossible differential comes from a bit contradiction. Our method finds a 14-round impossible differential of XTEA and a 13-round impossible differential of TEA, which result in impossible differential attacks on 23-round XTEA and 17-round TEA, respectively. These attacks significantly improve the previous impossible differential attacks on 14-round XTEA and 11-round TEA given by Moon et al. from FSE 2002. For HIGHT, we improve the 26-round impossible differential attack proposed by Özen et al.; an impossible differential attack on 27-round HIGHT that is slightly faster than the exhaustive search is also given.

Keywords

Memory Access Block Cipher Round Function Modular Addition Birthday Paradox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bogdanov, A., Rijmen, V.: Zero-Correlation Linear Cryptanalysis of Block Ciphers. IACR Cryptology ePrint Archive 2011, 123 (2011)Google Scholar
  3. 3.
    Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced Data Complexity. Pre-proceedings of FSE 2012 (2012)Google Scholar
  4. 4.
    Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Another Look at Complementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 347–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, http://www.cits.rub.de/imperia/md/content/magnus/idissmd4.pdf
  6. 6.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 402–417. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    International Standardization of Organization (ISO): International Standard- ISO/IEC 18033-3, Information technology-Security techniques-Encryption algorithms -Part 3: Block ciphers (2010)Google Scholar
  9. 9.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Knudsen, L.: DEAL - A 128-bit Block Cipher. In: NIST AES Proposal (1998)Google Scholar
  13. 13.
    Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.S.: Related Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Koo, B., Hong, D., Kwon, D.: Related-Key Attack on the Full HIGHT. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a Related-Key Rectangle Attack. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 286–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES 2006. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lu, J.: Related-key Rectangle Attack on 36 Rounds of the XTEA Block Cipher. Int. J. Inf. Sec. 8(1), 1–11 (2009)CrossRefGoogle Scholar
  18. 18.
    Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanalysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Needham, R.M., Wheeler, D.J.: TEA Extensions. Tech. rep., University of Cambridge (October 1997)Google Scholar
  20. 20.
    Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto, J.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on Reduced-Round XTEA. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 250–267. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Zhang, P., Sun, B., Li, C.: Saturation Attack on the Block Cipher HIGHT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 76–86. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiazhe Chen
    • 1
    • 2
  • Meiqin Wang
    • 1
    • 2
  • Bart Preneel
    • 2
  1. 1.Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of MathematicsShandong UniversityJinanChina
  2. 2.ESAT/COSIC and IBBTKU LeuvenBelgium

Personalised recommendations