Compressibility and Crushability Reproduction through an Amorphous Haptic Interface

  • Amir Berrezag
  • Yon Visell
  • Vincent Hayward
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7283)


The demonstration involves a new haptic interface based on a wide-bandwidth electromagnetic valve and a pair of chambers filled with a magnetorheological fluid. It is intended to reproduce, with high-fidelity, properties of complex materials that are experienced through pressing and squeezing actions, at the detriment of shape.


Hard Surface Haptic Interface Haptic Perception Haptic Rendering Haptic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayward, V., MacLean, K.E.: Do it yourself haptics, part-I. IEEE Robotics and Automation Magazine 14(4), 88–104 (2007)CrossRefGoogle Scholar
  2. 2.
    Benali Khoudja, M., Hafez, M., Alexandre, J.-M., Kheddar, A.: Tactile interfaces: a state of the art survey. In: International Symposium on Robotics, Paris, pp. 721–726 (March 2004)Google Scholar
  3. 3.
    Visell, Y.: Tactile sensory substitution: Models for enaction in HCI. Interacting with Computers 21(1–2), 38–53 (2009)CrossRefGoogle Scholar
  4. 4.
    Gunther, E., O’Modhrain: Cutaneous grooves: Composing for the sense of touc. Journal of New Music Research 32(4), 369–381 (2003)CrossRefGoogle Scholar
  5. 5.
    Hoshi, T., Iwamoto, T., Shinoda, H.: Non-contact tactile sensation synthesized by ultrasound transducers. In: Proceedings of the World Haptics Conference, pp. 256–260 (2009)Google Scholar
  6. 6.
    Turchet, L., Nordahl, R., Serafin, S., Berrezag, A., Dimitrov, S., Hayward, V.: Audio-haptic physically-based simulation of walking on different grounds. In: Proceedings of the 2010 the IEEE International Worshop on Multimedia Signal Processing, MMSP 2010, pp. 269–273 (2010)Google Scholar
  7. 7.
    Visell, Y., Fontana, F.: Walking with the Senses: Non-visual perceptual techniques for walking in simulated environments. Logos Verlag (2012)Google Scholar
  8. 8.
    Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Transactions on Robotics 27(3), 461–472 (2011)CrossRefGoogle Scholar
  9. 9.
    Visell, Y., Giordano, B., Millet, G., Cooperstock, J.: Vibration influences haptic perception of surface compliance during walking. PLoS ONE 6(3), e17697 (2011)CrossRefGoogle Scholar
  10. 10.
    Campion, G., Gosline, A.H., Hayward, V.: Passive viscous haptic textures. In: Proceedings from Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 379–380 (2008)Google Scholar
  11. 11.
    Bergmann-Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychologica 121(1), 1–20 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amir Berrezag
    • 1
  • Yon Visell
    • 1
  • Vincent Hayward
    • 1
  1. 1.ISIR, Institut des Systèmes Intelligents et de RobotiqueUPMC Univ. Paris 6ParisFrance

Personalised recommendations