Advertisement

Static and Dynamic Seismic Imaging of Piton de la Fournaise

  • Jean Battaglia
  • Florent Brenguier
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

Data from the Piton de la Fournaise Volcanological Observatory (“Observatoire Volcanologique du Piton de la Fournaise”, OVPF) and from the Undervolc project (Brenguier et al. in Seismol Res Lett 83(1):97–102, 2012) have been used to image the interior of the volcano. Two different approaches have been carried out. One is noise-based and allows both imaging and monitoring. The other is based on P-wave first arrival times of local earthquakes to derive 3D tomographic models.

Keywords

Rayleigh Wave Seismic Velocity Seismic Noise Volcanic Edifice Coda Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the OVPF’s technical staff for operating and maintaining the Piton de la Fournaise network since 1980.

References

  1. Aki K, Lee WHK (1976) Determination of three dimensional velocity anomalies under a seismic array using first P-arrival times from local earthquakes. J Geophys Res 81:4381–4399CrossRefGoogle Scholar
  2. Bachèlery P, Saint-Ange F, Villeneuve N, Savoye B, Normand A, Le Drezen E, Barrère A, Quod J-P, Deplus C (2010) Huge lava flows into the sea and caldera collapse, April 2007, Piton de la Fournaise volcano, IAVCEI third workshop on Collapse Calderas, La Réunion, pp 73–74Google Scholar
  3. Baig A, Campillo M, Brenguier F (2009) Denoising seismic noise cross correlations. J Geophys Res 114(B8):2156–2202. doi: 10.1029/2008JB006085 Google Scholar
  4. Battaglia J, Ferrazzini V, Staudacher T, Aki K, Cheminée J-L (2005) Pre-eruptive migration of earthquakes at the Piton de la Fournaise Volcano (Reunion Island). Geophys J Int 161(2):549–558CrossRefGoogle Scholar
  5. Battaglia J, Brenguier F, Roult G (2016) Seismic monitoring at Piton de la Fournaise. In: Bachèlery P, Lénat J-F, Di Muro A, Michon L (eds) Active volcanoes of the southwest Indian Ocean: Piton de la Fournaise and Karthala, active volcanoes of the world. Springer, BerlinGoogle Scholar
  6. Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34:L02305. doi: 10.1029/2006GL028586 CrossRefGoogle Scholar
  7. Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1(2):126–130CrossRefGoogle Scholar
  8. Brenguier F, Clarke D, Aoki Y, Shapiro NM, Campillo M, Ferrazzini V (2011) Monitoring volcanoes using seismic noise correlations. C R Geosci 343:633–638. doi: 10.1016/j.crte.2010.12.010 CrossRefGoogle Scholar
  9. Brenguier F, Kowalski P, Staudacher T et al (2012) First results from the UnderVolc high resolution seismic and GPS network deployed on Piton de la Fournaise Volcano. Seismol Res Lett 83(1): 97–102Google Scholar
  10. Campillo M (2006) Phase and correlation in random seismic fields and the reconstruction of the green function. Pure Appl Geophys 163(2):475–502CrossRefGoogle Scholar
  11. Clarke D, Zaccarelli L, Shapiro N, Brenguier F (2011) Assessment of resolution and accuracy of the moving window cross spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophys J Int. doi: 10.1111/j.1365-246X.2011.05074.x Google Scholar
  12. Clarke D, Brenguier F, Froger J-L, Shapiro N, Peltier A, Staudacher T (2013) Timing of a large volcanic flank movement at Piton de la Fournaise volcano using noise-based seismic monitoring and ground deformation measurements. Geophys J Int 195(2):1132–1140CrossRefGoogle Scholar
  13. Froger J-L, Cayol V, Famin V (2016) The March–April 2007 eruption of Piton de la Fournaise as recorded by interferometric data. In: Bachèlery P, Lénat J-F, Di Muro A, Michon L (eds) Active volcanoes of the southwest Indian Ocean: Piton de la Fournaise and Karthala. Springer, BerlinGoogle Scholar
  14. Got JL, Peltier A, Staudacher T, Kowalski P, Boissier P (2013) Edifice strength and magma transfer modulation at Piton de la Fournaise volcano. J Geophys Res 118:1–18. doi: 10.1002/jgrb.50350 CrossRefGoogle Scholar
  15. Grêt A, Snieder R, Aster R, Kyle P (2005) Monitoring rapid temporal changes in a volcano with coda wave interferometry. Geophys Res Lett 32:1–4CrossRefGoogle Scholar
  16. Lankar V (1997) Approches par tomographie sismique du Piton de la Fournaise, La Réunion. Ph.D., thesis, Inst. de Phys. du Globe, ParisGoogle Scholar
  17. Larose E, Planes T, Rossetto V, Margerin L (2010) Locating a small change in a multiple scattering environment. Appl Phys Lett 96(20):204101CrossRefGoogle Scholar
  18. Lecocq T, Caudron C, Brenguier F (2013) MSNoise, a Python package for computing and monitoring seismic velocity changes using ambient seismic noise. Seismol Res LettGoogle Scholar
  19. Monteiller V, Got J-L, Virieux J, Okubo P (2005) An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano. J Geophys Res 110:B12306. doi: 10.1029/2004JB003466 CrossRefGoogle Scholar
  20. Nercessian A, Hirn A, Lépine J-C, Sapin M (1996) Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution. J Volcanol Geotherm Res 70:123–143CrossRefGoogle Scholar
  21. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res 184(1–2):93–108. doi.org/ 10.1016/j.jvolgeores.2008.12.008
  22. Podvin P, Lecomte I (1991) Finite-difference computation of traveltimes in very contrasted velocity models—a massively parallel approach and its associated tools. Geophys J Int 105:271–284CrossRefGoogle Scholar
  23. Prôno E, Battaglia J, Monteiller V, Got J-L, Ferrazzini V (2009) P-wave velocity structure of Piton de la Fournaise volcano deduced from seismic data recorded between 1996 and 1999. J Volcanol Geotherm Res 184(1–2):49–62CrossRefGoogle Scholar
  24. Ratdomopurbo A, Poupinet G (1995) Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt. Merapi (Indonesia). Geophys Res Lett 22(7):775–778CrossRefGoogle Scholar
  25. Sens-Schoenfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano. Indonesia Geophys Res Lett 33:1–5Google Scholar
  26. Shapiro N, Campillo M, Stehly L, Ritzwoller M (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615CrossRefGoogle Scholar
  27. Snieder R, Grêt A, Douma H, Scales J (2002) Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 295(5563):2253CrossRefGoogle Scholar
  28. Staudacher T, Ferrazzini V, Peltier A, Kowalski P, Boissier P, Catherine P, Lauret F, Massin F (2009) The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J Volcano Geotherm Res 184(1–2):126–137. doi: 10.1016/j.jvolgeores.2008.11.005 CrossRefGoogle Scholar
  29. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13). doi: 10.1103/PhysRevLett.87.134301
  30. Wegler U, Lühr B, Snieder R, Ratdomopurbo A (2006) Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia). Geophys Res Lett 33:1–4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRD, OPGCClermont-FerrandFrance
  2. 2.Institut des Sciences de la TerreUniversity of GrenobleGrenobleFrance

Personalised recommendations