A Review of the Recent Geochemical Evolution of Piton de la Fournaise Volcano (1927–2010)

  • Ivan Vlastélic
  • Aaron J. Pietruszka
Part of the Active Volcanoes of the World book series (AVOLCAN)


Between 1927 and 2010, more than one hundred eruptions of Piton de la Fournaise produced ~1 km3 of lava, and the volcano’s summit collapsed twice (in 1931 and 2007). These lavas display, respectively, 20 and 65 % of the Sr–Nd and the Pb isotope ranges reported for La Réunion volcanoes over their known eruptive record (3.8 Ma). Variations in major and trace element concentrations and Sr–Pb isotopes do not define a temporal trend at the scale of the century, but display systematic short-term cyclic fluctuations. The positive correlation between 87Sr/86Sr and ratios of trace elements that are more versus less incompatible during partial melting of the mantle (e.g., Nd/Sm, La/Sm) probably results from the sampling of small-scale heterogeneities within the plume source. Changes in the degree of melting and/or crystallization are debated, but these appear ultimately linked to source properties. Lead isotopes do not co-vary with Sr isotopes, in part because of the partitioning of Pb into dense metallic phases that are preferentially sampled during high-flux eruptions. Taken together, Sr–Nd–Pb–Os–Th isotopes do not support contamination of magma with genetically unrelated components, such as the underlying Indian oceanic crust, mantle lithosphere, seawater, or seawater-altered lavas. Yet, in some rare cases (e.g. the 1998 Hudson eruption), the compositional patterns suggest that the parental magma assimilated older volcanic products within the edifice, such as crystal cumulates and/or interstitial differentiated melts. The geochemical fluctuations over the 1927–2010 time period constrain the residence time of magma in the shallow reservoir to 10–30 years and its size to 0.1–0.3 km3. The magma residence time during the course of the long-lived 1998 eruption is estimated to be an order of magnitude shorter, but the reservoir was probably of similar size. Instead, the shorter magma residence for the 1998 eruption was probably due to a higher magma flux.


Volcanic Edifice Plumbing System Trace Element Ratio Kilauea Volcano Incompatible Element Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper benefited from the constructive comments of E. Todd and M. Coombs from USGS. The studied samples were collected by G. Kieffer, P.M. Vincent, P. Boivin, P. Bachèlery, F. Albarède, T. Staudacher, and several members from the Piton de la Fournaise observatory and La Réunion University. D. Auclair, and C. Bosq are thanked for the new Sr isotope data on the April 2007 eruption. This work was financed by the French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 118.


  1. Aki K, Ferrazzini V (2001) Comparison of Mount Etna, Kilauea, and Piton de la Fournaise by a quantitative modeling of their eruption histories. J Geophys Res 106:4091–4102CrossRefGoogle Scholar
  2. Albarède F (1993) Residence time analysis of geochemical fluctuations in volcanic series. Geochim Cosmochim Acta 57:615–621CrossRefGoogle Scholar
  3. Albarède F, Tamagnan V (1988) Modelling the recent geochemical evolution of the Piton de la Fournaise volcano, Réunion island, 1931–1986. J Petrol 29:997–1030CrossRefGoogle Scholar
  4. Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BGJ, Bachèlery P, Cheminée JL (1997a) The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. J Petrol 38:171–201CrossRefGoogle Scholar
  5. Albarède F, Goldstein SL, Dautel D (1997b) The neodymium isotopic composition of manganese nodules from the Southern and Indian oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation. Geochim Cosmochim Acta 61:1277–1291CrossRefGoogle Scholar
  6. Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion). Etude volcanologique, structurale et pétrologique. Thèse, Université de Clermont-Ferrand, FranceGoogle Scholar
  7. Bachèlery P (1999) Le fonctionnement des volcans boucliers. Exemple des volcans de La Réunion et de la Grande Comore. Mémoire d’Habilitation à Diriger les Recherches, Université de Clermont-Ferrand, FranceGoogle Scholar
  8. Battaglia J, Ferrazzini V, Staudacher T, Aki K, Cheminée J-L (2005) Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano (Réunion Island). Geophys J Int 161:549–558CrossRefGoogle Scholar
  9. Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcanol Geotherm Res 184:105–109Google Scholar
  10. Bosch D, Blichert-Toft J, Moynier F, Nelson BK, Télouk P, Gillot P-Y, Albarède F (2008) Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): a tale of two small-scale mantle “blobs”? Earth Planet Sci Lett 265:748–768CrossRefGoogle Scholar
  11. Bureau H, Métrich N, Semet M, Staudacher T (1999) Fluid-magma decoupling in a hot-spot volcano. Geophys Res Lett 23:3501–3504CrossRefGoogle Scholar
  12. Burton KW, Cenki-Tok B, Mokadem F, Harvey J, Gannoun A, Alard O, Parkinson IJ (2012) Unradiogenic Pb in Earth’s upper mantle. Nature Geosci 5:570–573CrossRefGoogle Scholar
  13. Collins SJ, Maclennan J, Pyle DM, Barnes SJ, Upton BGJ (2012) Two phases of sulphide saturation in Réunion magma: evidence from cumulates. Earth Planet Sci Lett 337–338:104–113CrossRefGoogle Scholar
  14. Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J Volcanol Geotherm Res 184:174–192CrossRefGoogle Scholar
  15. Famin V, Welsch B, Okumura S, Bachèlery P, Nakashima S (2009) Three differentiation stages of a single magma at Piton de la Fournaise volcano (Reunion hotspot). Geochem Geophys Geosyst 10:Q01007. doi: 10.1029/2008GC002015 CrossRefGoogle Scholar
  16. Fisk MR, Upton BGJ, White WM (1988) Geochemical and experimental study of the genesis of magmas of Réunion Island, Indian Ocean. J Geophys Res 93:4933–4950CrossRefGoogle Scholar
  17. Fretzdorff S, Haase KM (2002) Geochemistry and petrology of lavas from the submarine flanks of Réunion Island (western Indian Ocean): implications for magma genesis and mantle source. Mineral Petrol 75:153–184CrossRefGoogle Scholar
  18. Garcia MO, Ito E, Eiler JM, Pietruszka AJ (1998) Crustal contamination of Kilauea volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J Petrol 39:803–817CrossRefGoogle Scholar
  19. Garcia MO, Pietruszka AJ, Rhodes JM (2003) A petrologic perspective of Kilauea volcano’s summit magma reservoir. J Petrol 44:2313–2339CrossRefGoogle Scholar
  20. Garcia MO, Ito E, Eiler JM (2008) Oxygen isotope evidence for chemical interaction of Kilauea historical magmas with basement rocks. J Petrol 49:757–769CrossRefGoogle Scholar
  21. Graham D, Lupton J, Albarède F, Condomines M (1990) Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature 347:545–548CrossRefGoogle Scholar
  22. Hart S, Gaetani GA (2006) Mantle Pb paradoxes: the sulfide solution. Contrib Mineral Petrol 152:295–308CrossRefGoogle Scholar
  23. Jackson MG, Weis D, Huang S (2012) Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem Geophys Geosyst 13:Q09009. doi: 10.1029/2012GC004268 Google Scholar
  24. Lénat JF, Bachèlery P (1990) Structure et fonctionnement de la zone centrale du Piton de la Fournaise. In: Lénat JF (ed) Le volcanisme de la Réunion—Monographie. Centre de Recherche volcanologique. Université de Clermont-Ferrand, pp 257–296Google Scholar
  25. Lénat JF, Fitterman D, Jackson DB, Labazuy P (2000) Geoelectrical structure of the central zone of Piton de la Fournaise volcano (Réunion). Bull Volcanol 62:75–89CrossRefGoogle Scholar
  26. Lénat JF, Bachèlery P, Peltier A (2012a) The interplay between collapse structures, hydrothermal systems, and magma intrusions: the case of the central area of Piton de la Fournaise volcano. Bull Volcanol 74:407–421CrossRefGoogle Scholar
  27. Lénat JF, Bachèlery P, Merle O (2012b) Anatomy of Piton de la Fournaise volcano (La Réunion, Indian Ocean). Bull Volcanol 74:1945–1961CrossRefGoogle Scholar
  28. Luais B (2004) Temporal changes in Nd isotopic composition of Piton de la Fournaise magmatism (Réunion Island, Indian Ocean). Geochem Geophys Geosyst 5:Q01008. doi: 10.1029/2002GC000502 CrossRefGoogle Scholar
  29. Marske JP, Pietruszka AJ, Weis D, Garcia MO, Rhodes JM (2007) Rapid passage of a small-scale mantle heterogeneity through the melting regions of Kilauea and Mauna Loa Volcanoes. Earth Planet Sci Lett 259:34–50CrossRefGoogle Scholar
  30. Marske JP, Garcia MO, Pietruszka AJ, Rhodes JM, Norman MD (2008) Geochemical variations during Kilauea’s Puu Oo eruption reveal a fine-scale mixture of mantle heterogeneities within the Hawaiian plume. J Petrol 49:1297–1318CrossRefGoogle Scholar
  31. Michon L, Ferrazzini V, Di Muro A (2016) Magma paths at Piton de la Fournaise volcano. In: Bachèlery P, Lénat J-F, Di Muro A, Michon L (eds) Active volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active volcanoes of the World. Springer, Berlin Google Scholar
  32. Nauret F, Arigot M, Louvat P, Moreira M (2007) Is the isotope composition of reunion plume really homogeneous? Geochim Cosmochim Acta 71:A707Google Scholar
  33. Nercessian A, Hirn A, Lépine J-C, Sapin M (1996) Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution. J Volcanol Geotherm Res 70:123–143CrossRefGoogle Scholar
  34. O’Hara MJ (1968) The bearing of phase equilibria studies on synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133CrossRefGoogle Scholar
  35. Peltier A (2007) Suivi, modélisation et évolution des processus d’injection magmatique au Piton de la Fournaise (Réunion) à partir d’une analyse croisée des données de déformation, géochimiques et structurales. Thèse, Université de la Réunion, FranceGoogle Scholar
  36. Peltier A, Famin V, Bachèlery P, Cayol V, Fukushima Y, Staudacher T (2008) Cyclic magma storages and transfers at Piton de la Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data. Earth Planet Sci Lett 270:180–188CrossRefGoogle Scholar
  37. Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de la Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res 184:93–108CrossRefGoogle Scholar
  38. Pichavant M, Brugier Y, Di Muro A (2016) Petrological and experimental constraints. In: Bachèlery P, Lénat J-F, Di Muro A, Michon L (eds) Active volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active volcanoes of the World. Springer, Berlin Google Scholar
  39. Pietruszka AJ, Garcia MO (1999a) The size and shape of Kilauea volcano’s summit magma storage reservoir: a geochemical probe. Earth Planet Sci Lett 167:311–320CrossRefGoogle Scholar
  40. Pietruszka AJ, Garcia MO (1999b) A rapid fluctuation in the mantle source and melting history of Kilauea volcano inferred from the geochemistry of its historical summit lavas (1790–1982). J Petrol 40:1321–1342CrossRefGoogle Scholar
  41. Pietruszka AJ, Hauri EH, Blichert-Toft J (2009) Crustal contamination of mantle-derived magmas within Piton de la Fournaise volcano, Réunion Island. J Petrol 4:661–684CrossRefGoogle Scholar
  42. Pietruszka AJ, Norman MD, Garcia MO, Marske JP, Burns DH (2013) Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet Sci Lett 361:298–309CrossRefGoogle Scholar
  43. Poland MP, Miklius A, Sutton AJ, Thornber CR (2012) A mantle-driven surge in magma supply to Kilauea volcano during 2003–2007. Nat Geosci 5:295–300CrossRefGoogle Scholar
  44. Salaün A, Villemant B, Semet MP, Staudacher T (2010) Cannibalism of olivine-rich cumulate xenoliths during the 1998 eruption of Piton de la Fournaise (La Réunion hotspot): implication for the generation of magma diversity. J Volcanol Geotherm Res 198:187–204CrossRefGoogle Scholar
  45. Schiano P, David K, Vlastélic I, Gannoun A, Klein M, Nauret F, Bonnand P (2012) Osmium isotope systematics of historical lavas from Piton de la Fournaise (Réunion Island, Indian Ocean). Contrib Mineral Petrol 164:805–820CrossRefGoogle Scholar
  46. Sigmarsson O, Condomines M, Bachèlery P (2005) Magma residence time beneath the Piton de la Fournaise volcano, Réunion Island, from U-series disequilibria. Earth Planet Sci Lett 234:223–234CrossRefGoogle Scholar
  47. Smietana M (2011) Pétrologie, geochronology (K-Ar) et géochimie élémentaire et isotopique (Sr, Nd, Hf, Pb) de laves anciennes de la Réunion: Implications sur la construction de l’édifice volcanique. Thèse, Université de la Réunion, FranceGoogle Scholar
  48. Staudacher T, Ferrazzini V, Peltier A, Kowalski P, Boissier P, Catherine P, Lauret F, Massin F (2009) The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 184:126–137CrossRefGoogle Scholar
  49. Stieltjes L, Moutou P (1989) A statistical and probabilistic study of the historic activity of Piton de la Fournaise, Réunion Island, Indian Ocean. J Volcanol Geotherm Res 36:67–86CrossRefGoogle Scholar
  50. Upton BGJ, Wadsworth WJ (1971) Rhyodacite glass in Réunion basalt. Mineral Mag 38:152–159CrossRefGoogle Scholar
  51. Upton BGJ, Semet MP, Joron J-L (2000) Cumulate clasts in the Bellecombe Ash Member, Piton de la Fournaise, Réunion Island, and their bearing on cumulative processes in the petrogenesis of the Réunion lavas. J Volcanol Geotherm Res 104:297–318CrossRefGoogle Scholar
  52. Villemant B, Salaün A, Staudacher T (2009) Evidence for a homogeneous primary magma at Piton de la Fournaise (La Réunion): a geochemical study of matrix glass, melt inclusions and Pélé’s hairs of the 1998–2008 eruptive activity. J Volcanol Geotherm Res 184:79–92CrossRefGoogle Scholar
  53. Villeneuve N, Bachèlery P (2006) Revue de la typologie des éruptions au Piton de La Fournaise, processus et risques volcaniques associés. Cybergeo: Eur J Geogr Environ Nat Paysage, article 336. doi: 10.4000/cybergeo.2536
  54. Vlastélic I, Staudacher T (2014) Iron-oxide coatings in Quenched Lavas from Piton de la Fournaise Volcano (Réunion Island). In: 2014 Goldschmidt conference, 8–13 June 2014, Sacramento, USAGoogle Scholar
  55. Vlastélic I, Abouchami W, Galer SJG, Hofmann AW (2001) Geographic control on Pb isotope distribution and sources in Indian Ocean Fe-Mn deposits. Geochim Cosmochim Acta 65:4303–4319CrossRefGoogle Scholar
  56. Vlastélic I, Staudacher T, Semet M (2005) Rapid change of lava composition from 1998 to 2002 at Piton de la Fournaise (Réunion) inferred from Pb isotopes and trace elements: evidence for variable crustal contamination. J Petrol 46:79–107CrossRefGoogle Scholar
  57. Vlastélic I, Lewin E, Staudacher T (2006) Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth Planet Sci Lett 248:364–378Google Scholar
  58. Vlastélic I, Peltier A, Staudacher T (2007) Short-term (1998–2006) fluctuations of Pb isotopes at Piton de la Fournaise volcano (Réunion Island): origins and constraints on the size and shape of the magma reservoir. Chem Geol 244:202–220CrossRefGoogle Scholar
  59. Vlastélic I, Deniel C, Bosq C, Télouk P, Boivin P, Bachèlery P, Famin V, Staudacher T (2009) Pb isotope geochemistry of Piton de la Fournaise historical lavas. J Volcanol Geotherm Res 184:63–78CrossRefGoogle Scholar
  60. Vlastélic I, Staudacher T, Bachèlery P, Télouk P, Neuville D, Benbakkar M (2011) Lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem Geol 284:26–34Google Scholar
  61. Vlastélic I, Menard G, Gannoun A, Piro J-L, Staudacher T, Famin V (2013) Magma degassing during the April 2007 collapse of Piton de la Fournaise: the record of semi-volatile trace elements (Li, B, Cu, In, Sn, Cd, Re, Tl, Bi). J Volcanol Geotherm Res 254:94–107CrossRefGoogle Scholar
  62. Welsch B (2010) Signification des Océanites dans le fonctionnement du Piton de la Fournaise, Île de la Réunion. Thèse, Université de la Réunion, FranceGoogle Scholar
  63. Wright TL (1971) Chemistry of Kilauea and Mauna Loa in space and time. US Geol Surv Prof Pap 735:1–40Google Scholar
  64. Wright TL, Fiske RS (1971) Origin of differentiated and hybrid lavas of Kilauea Volcano. Hawaii J Petrol 12:1–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalAubièreFrance
  2. 2.U.S. Geological SurveyDenver Federal CenterDenverUSA

Personalised recommendations