Black Holes in Supergravity: Flow Equations and Duality

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 142)

Abstract

The analysis of black hole solutions and the study of their physics is an active and important branch of contemporary theoretical physics. In fact, not only black holes are an excellent theoretical laboratory for understanding some features of quantum gravity, but they can also be successfully used as a tool in applications to nuclear physics, condensed matter, algebraic geometry and atomic physics.

Keywords

Black Hole Scalar Field Central Charge Black Hole Solution Magnetic Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The original parts of the contents of these lectures come from collaborations with I. Bena, A. Ceresole, S. Ferrara, S. Giusto, G. Lopes Cardoso, J. Perz, C. Ruef, C. Toldo, A. Yeranyan and N. Warner, which are gratefully acknowledged. I would also like to thank the organizers of the “27th Nordic Spring String Meeting”, “SAM 2009” and “BOSS 2011” schools for the kind hospitality and the nice and stimulating environment. This work is supported in part by the ERC Advanced Grant no. 226455, “Supersymmetry, Quantum Gravity and Gauge Fields” (SUPERFIELDS), by the Fondazione Cariparo Excellence Grant String-derived supergravities with branes and fluxes and their phenomenological implications, by the European Programme UNILHC (contract PITN-GA-2009-237920) and by the Padova University Project CPDA105015/10.

References

  1. 1.
    L. Andrianopoli, R. D’Auria, S. Ferrara, U duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A13, 431–490 (1998). (hep-th/9612105)Google Scholar
  2. 2.
    L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante, First order description of black holes in moduli space. J. High Energy Phys. 0711, 032 (2007). (arXiv:0706.0712 (hep-th))Google Scholar
  3. 3.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Fake superpotential for large and small extremal black holes. J. High Energy Phys. 1008, 126 (2010). (arXiv:1002.4340 (hep-th))Google Scholar
  4. 4.
    L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante, First order description of D  = 4 static black holes and the Hamilton-Jacobi equation. Nucl. Phys. B833, 1–16 (2010). (arXiv:0905.3938 (hep-th))Google Scholar
  5. 5.
    V. Balasubramanian, J. de Boer, S. El-Showk, I. Messamah, Black holes as effective geometries. Class. Quantum Gravity 25, 214004 (2008). (arXiv:0811.0263 (hep-th))Google Scholar
  6. 6.
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, STU black holes and string triality. Phys. Rev. D54, 6293–6301 (1996). (arXiv:hep-th/9608059 (hep-th))Google Scholar
  7. 7.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D7, 2333–2346 (1973)Google Scholar
  8. 8.
    S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A21, 5043–5098 (2006). (hep-th/0606209)Google Scholar
  9. 9.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, d  = 4 black hole attractors in N  = 2 supergravity with Fayet-Iliopoulos terms. Phys. Rev. D77, 085027 (2008). (arXiv:0802.0141 (hep-th))Google Scholar
  10. 10.
    S. Bellucci, S. Ferrara, A. Shcherbakov, A. Yeranyan, Black hole entropy, flat directions and higher derivatives. J. High Energy Phys. 0910, 024 (2009). (arXiv:0906.4910 (hep-th))Google Scholar
  11. 11.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, stu black holes unveiled. (arXiv:0807.3503 (hep-th))Google Scholar
  12. 12.
    I. Bena, N.P. Warner, One ring to rule them all …and in the darkness bind them? Adv. Theor. Math. Phys. 9, 667–701 (2005). (hep-th/0408106)Google Scholar
  13. 13.
    I. Bena, N.P. Warner, Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1–92 (2008). (hep-th/0701216)Google Scholar
  14. 14.
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef, N.P. Warner, Non-BPS black rings and black holes in Taub-NUT. J. High Energy Phys. 0906, 015 (2009). (arXiv:0902.4526 (hep-th))Google Scholar
  15. 15.
    I. Bena, S. Giusto, C. Ruef, N.P. Warner, Multi-center non-BPS black holes: the solution. J. High Energy Phys. 0911, 032 (2009). (arXiv:0908.2121 (hep-th))Google Scholar
  16. 16.
    I. Bena, S. Giusto, C. Ruef, N.P. Warner, A (running) bolt for new reasons. J. High Energy Phys. 0911, 089 (2009). (arXiv:0909.2559 (hep-th))Google Scholar
  17. 17.
    I. Bena, S. Giusto, C. Ruef, N.P. Warner, Supergravity solutions from floating branes. J. High Energy Phys. 1003, 047 (2010). (arXiv:0910.1860 (hep-th))Google Scholar
  18. 18.
    I. Bena, N. Bobev, S. Giusto, C. Ruef, N.P. Warner, An infinite-dimensional family of black-hole microstate geometries. J. High Energy Phys. 1103, 022 (2011). (arXiv:1006.3497 (hep-th))Google Scholar
  19. 19.
    G. Bossard, Y. Michel, B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential. J. High Energy Phys. 1001, 038 (2010). (arXiv:0908.1742 (hep-th))Google Scholar
  20. 20.
    I. Bredberg, C. Keeler, V. Lysov, A. Strominger, Cargese lectures on the Kerr/CFT correspondence. (arXiv:1103.2355 (hep-th))Google Scholar
  21. 21.
    S.L. Cacciatori, D. Klemm, Supersymmetric AdS(4) black holes and attractors. J. High Energy Phys. 1001, 085 (2010). (arXiv:0911.4926 (hep-th))Google Scholar
  22. 22.
    A. Celi, A. Ceresole, G. Dall’Agata, A. Van Proeyen, M. Zagermann, On the fakeness of fake supergravity. Phys. Rev. D71, 045009 (2005). (hep-th/0410126)Google Scholar
  23. 23.
    A. Ceresole, G. Dall’Agata, Flow equations for Non-BPS extremal black holes. J. High Energy Phys. 0703, 110 (2007). (hep-th/0702088)Google Scholar
  24. 24.
    A. Ceresole, R. D’Auria, S. Ferrara, The symplectic structure of N  = 2 supergravity and its central extension. Nucl. Phys. Proc. Suppl. 46, 67–74 (1996). (hep-th/9509160)Google Scholar
  25. 25.
    A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, First order flows for N  = 2 extremal black holes and duality invariants. Nucl. Phys. B824, 239–253 (2010). (arXiv:0908.1110 (hep-th))Google Scholar
  26. 26.
    A. Ceresole, S. Ferrara, A. Marrani, Small N  = 2 extremal black holes in special geometry. Phys. Lett. B693, 366–372 (2010). (arXiv:1006.2007 (hep-th))Google Scholar
  27. 27.
    A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, Universality of the superpotential for d  = 4 extremal black holes. Nucl. Phys. B832, 358–381. (arXiv:0910.2697 (hep-th))Google Scholar
  28. 28.
    M. Cvetic, C.M. Hull, Black holes and U duality. Nucl. Phys. B480, 296–316 (1996). (hep-th/9606193)Google Scholar
  29. 29.
    M. Cvetic, A.A. Tseytlin, Phys. Rev. D 53, 5619 (1996) (Erratum-ibid. D 55, 3907 (1997)) (hep-th/9512031)Google Scholar
  30. 30.
    M. Cvetic, D. Youm, Phys. Rev. D 53, 584 (1996) (hep-th/9507090)Google Scholar
  31. 31.
    G. Dall’Agata, A. Gnecchi, Flow equations and attractors for black holes in N  = 2 U(1) gauged supergravity. J. High Energy Phys. 1103, 037 (2011). (arXiv:1012.3756 (hep-th))Google Scholar
  32. 32.
    G. Dall’Agata, S. Giusto, C. Ruef, U-duality and non-BPS solutions. J. High Energy Phys. 1102, 074 (2011). (arXiv:1012.4803 (hep-th))Google Scholar
  33. 33.
    J.R. David, G. Mandal, S.R. Wadia, Microscopic formulation of black holes in string theory. Phys. Rept. 369, 549–686 (2002). (hep-th/0203048)Google Scholar
  34. 34.
    F. Denef, Supergravity flows and D-brane stability. J. High Energy Phys. 0008, 050 (2000). (hep-th/0005049)Google Scholar
  35. 35.
    F. Denef, G.W. Moore, Split states, entropy enigmas, holes and halos. (hep-th/0702146 (HEP-TH))Google Scholar
  36. 36.
    S. Ferrara, M. Gunaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A13, 2075–2088 (1998). (hep-th/9708025)Google Scholar
  37. 37.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514–1524 (1996). (hep-th/9602136)Google Scholar
  38. 38.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525–1534 (1996). (hep-th/9603090)Google Scholar
  39. 39.
    S. Ferrara, A. Marrani, On the moduli space of non-BPS attractors for N  = 2 symmetric manifolds. Phys. Lett. B652, 111–117 (2007). (arXiv:0706.1667 (hep-th))Google Scholar
  40. 40.
    S. Ferrara, R. Kallosh, A. Strominger, N  = 2 extremal black holes. Phys. Rev. D52, 5412–5416 (1995). (hep-th/9508072)Google Scholar
  41. 41.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75–93 (1997). (hep-th/9702103)Google Scholar
  42. 42.
    S. Ferrara, J.M. Maldacena, Branes, central charges and U duality invariant BPS conditions. Class. Quantum Gravity 15, 749–758 (1998). (hep-th/9706097)Google Scholar
  43. 43.
    S. Ferrara, A. Gnecchi, A. Marrani, d  = 4 Attractors, effective horizon radius and fake supergravity. Phys. Rev. D78, 065003 (2008). (arXiv:0806.3196 (hep-th))Google Scholar
  44. 44.
    S. Ferrara, A. Marrani, Matrix norms, BPS bounds and marginal stability in N  = 8 supergravity. J. High Energy Phys. 1012, 038 (2010). (arXiv:1009.3251 (hep-th))Google Scholar
  45. 45.
    S. Ferrara, A. Marrani, E. Orazi, Split attractor flow in N  = 2 minimally coupled supergravity. Nucl. Phys. B846, 512–541 (2011). (arXiv:1010.2280 (hep-th))Google Scholar
  46. 46.
    P. Fre, A.S. Sorin, M. Trigiante, Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits. (arXiv:1103.0848 (hep-th)). W. Chemissany, P. Fre, J. Rosseel, A.S. Sorin, M. Trigiante, T. Van Riet, Black holes in supergravity and integrability. JHEP 1009, 80 (2010). (arXiv:1007.3209 (hep-th))Google Scholar
  47. 47.
    D.Z. Freedman, C. Nunez, M. Schnabl, K. Skenderis, Fake supergravity and domain wall stability. Phys. Rev. D69, 104027 (2004). (hep-th/0312055)Google Scholar
  48. 48.
    M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B193, 221 (1981)Google Scholar
  49. 49.
    D. Gaiotto, W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 0712, 093 (2007). (arXiv:0710.1638 (hep-th))Google Scholar
  50. 50.
    P. Galli, K. Goldstein, S. Katmadas, J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes. (arXiv:1012.4020 (hep-th))Google Scholar
  51. 51.
    P. Galli, T. Ortin, J. Perz, C.S. Shahbazi, Non-extremal black holes of N  = 2, d  = 4 supergravity. (arXiv:1105.3311 (hep-th))Google Scholar
  52. 52.
    A.M. Ghez, S. Salim, N.N. Weinberg, J.R. Lu, T. Do, J.K. Dunn, K. Matthews, M. Morris et al., Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008). (arXiv:0808.2870 (astro-ph))Google Scholar
  53. 53.
    G.W. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996). (hep-th/9607108)Google Scholar
  54. 54.
    E.G. Gimon, F. Larsen, J. Simon, Black holes in supergravity: the Non-BPS branch. J. High Energy Phys. 0801, 040 (2008). (arXiv:0710.4967 (hep-th))Google Scholar
  55. 55.
    E.G. Gimon, F. Larsen, J. Simon, Constituent model of extremal non-BPS black holes. J. High Energy Phys. 0907, 052 (2009). (arXiv:0903.0719 (hep-th))Google Scholar
  56. 56.
    K. Goldstein, S. Katmadas, Almost BPS black holes. J. High Energy Phys. 0905, 058 (2009). (arXiv:0812.4183 (hep-th))Google Scholar
  57. 57.
    K. Goldstein, R.P. Jena, G. Mandal, S.P. Trivedi, A C-function for non-supersymmetric attractors. J. High Energy Phys. 0602, 053 (2006). (hep-th/0512138)Google Scholar
  58. 58.
    S.W. Hawking, Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)Google Scholar
  59. 59.
    K. Hristov, S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry. J. High Energy Phys. 1104, 047 (2011). (arXiv:1012.4314 (hep-th))Google Scholar
  60. 60.
    C.M. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B438, 109–137 (1995). (hep-th/9410167)Google Scholar
  61. 61.
    R. Kallosh, T. Ortin, Phys. Rev. D 48, 742 (1993) (hep-th/9302109)Google Scholar
  62. 62.
    R. Kallosh, Multivalued entropy of supersymmetric black holes. J. High Energy Phys. 0001, 001 (2000). (hep-th/9912053)Google Scholar
  63. 63.
    R. Kallosh, B. Kol, E(7) symmetric area of the black hole horizon. Phys. Rev. D53, 5344–5348 (1996). (hep-th/9602014)Google Scholar
  64. 64.
    R. Kallosh, A.D. Linde, M. Shmakova, Supersymmetric multiple basin attractors. J. High Energy Phys. 9911, 010 (1999). (hep-th/9910021)Google Scholar
  65. 65.
    I. Kanitscheider, K. Skenderis, M. Taylor, Holographic anatomy of fuzzballs. J. High Energy Phys. 0704, 023 (2007). (hep-th/0611171)Google Scholar
  66. 66.
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter, J. Perz, First-order flow equations for extremal black holes in very special geometry. J. High Energy Phys. 0710, 063 (2007). (arXiv:0706.3373 (hep-th))Google Scholar
  67. 67.
    J.M. Maldacena, Black holes in string theory (hep-th/9607235)Google Scholar
  68. 68.
    S.D. Mathur, The Fuzzball proposal for black holes: an elementary review. Fortschr. Phys. 53, 793–827 (2005). (hep-th/0502050)Google Scholar
  69. 69.
    G.W. Moore, Arithmetic and attractors. (hep-th/9807087)Google Scholar
  70. 70.
    G. Moore, PiTP lectures on BPS states and wall-crossing in d  = 4, N  = 2 theories, http://www.physics.rutgers.edu/~gmoore/PiTP_July26_2010.pdf
  71. 71.
    T. Ortin, Phys. Rev. D 47, 313 (1993)Google Scholar
  72. 72.
    J. Perz, P. Smyth, T. Van Riet, B. Vercnocke, First-order flow equations for extremal and non-extremal black holes. J. High Energy Phys. 0903, 150 (2009). (arXiv:0810.1528 (hep-th))Google Scholar
  73. 73.
    B. Pioline, Lectures on black holes, topological strings and quantum attractors. Class. Quantum Gravity 23, S981 (2006). (hep-th/0607227)Google Scholar
  74. 74.
    A. Sen, Nucl. Phys. B 440, 421 (1995) (hep-th/9411187)Google Scholar
  75. 75.
    K. Skenderis, P.K. Townsend, Gravitational stability and renormalization group flow. Phys. Lett. B468, 46–51 (1999). (hep-th/9909070)Google Scholar
  76. 76.
    A. Strominger, Macroscopic entropy of N  = 2 extremal black holes. Phys. Lett. B383, 39–43 (1996). (hep-th/9602111)Google Scholar
  77. 77.
    A. Strominger, Black holes – the harmonic oscillators of the 21st Century, http://media.physics.harvard.edu/video/?id=COLLOQ_STROMINGER_091310
  78. 78.
    A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B379, 99–104 (1996). (hep-th/9601029)Google Scholar
  79. 79.
    P.K. Townsend, Black holes: lecture notes. (gr-qc/9707012)Google Scholar
  80. 80.
    R.M. Wald, The ‘Nernst theorem’ and black hole thermodynamics. Phys. Rev. D56, 6467–6474 (1997). (gr-qc/9704008)Google Scholar
  81. 81.
    M. Wijnholt, S. Zhukov, On the uniqueness of black hole attractors. (hep-th/9912002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFNSefione di PadovaPadovaItaly

Personalised recommendations