Skip to main content

Computers in Orthodontic Research

  • Chapter
  • First Online:
  • 1735 Accesses

Abstract

Computers are ubiquitous in orthodontic research, from inception to publication. This chapter presents basic principles of computer applications in orthodontics, placing emphasis on measurement of diagnostic records. Computer-aided cephalometric analysis is probably the most widely used application, so a thorough understanding of scanners and digital radiographic machines is essential. Issues related to measurement error are examined, and methods to minimise it, through multiple digitisation and image enhancement, are presented. Three-dimensional records, including facial scans, cone-beam computed tomography images and digital casts, require increased computer power but also a significant learning curve. Basic principles and accuracy of these methods are discussed, as well as radiation concerns related to ever-increasing CBCT use. This chapter concludes with simulation of orthodontic archwires, for calculation of force systems, and facial soft tissue simulation, which may provide realistic predictions of orthognathic surgery treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Battagel JM (1993) A comparative assessment of cephalometric errors. Eur J Orthod 15:305–314

    Article  PubMed  Google Scholar 

  2. Baumrind S, Frantz R (1971) The reliability of head film measurements: 1, landmark identification. Am J Orthod 60:111–127

    Article  PubMed  Google Scholar 

  3. Cohen AM (1984) Uncertainty in cephalometrics. Br J Orthod 11:44–48

    PubMed  Google Scholar 

  4. Houston WJB (1983) The analysis of errors in orthodontic measurements. Am J Orthod 83:382–390

    Article  PubMed  Google Scholar 

  5. Houston WJB, Maher RE, McElroy D, Sherriff M (1986) Sources of error in measurements from cephalometric radiographs. Eur J Orthod 8:149–151

    Article  PubMed  Google Scholar 

  6. Sandler PJ (1988) Reproducibility of cephalometric measurements. Br J Orthod 15:105–110

    PubMed  Google Scholar 

  7. Trpkova B, Major P, Prasad N, Nebbe B (1997) Cephalometric landmarks identification and reproducibility: a meta analysis. Am J Orthod Dentofacial Orthop 112:165–170

    Article  PubMed  Google Scholar 

  8. Damstra J, Huddleston Slater JJ, Fourie Z, Ren Y (2010) Reliability and the smallest detectable differences of lateral cephalometric measurements. Am J Orthod Dentofacial Orthop 138:546.e1–546.e8

    Article  Google Scholar 

  9. Chan CK, Tng TH, Hagg U, Cooke MS (1994) Effects of cephalometric landmark validity on incisor angulation. Am J Orthod Dentofacial Orthop 106:487–495

    Article  PubMed  Google Scholar 

  10. Tng TT, Chan TC, Hagg U, Cooke MS (1994) Validity of cephalometric landmarks. An experimental study on human skulls. Eur J Orthod 16:110–120

    Article  PubMed  Google Scholar 

  11. Eriksen E, Solow B (1990) Linearity of cephalometric digitizers. Eur J Orthod 13:337–342

    Article  Google Scholar 

  12. Tourne LPM (1996) Accuracy of a commercially available digitizer: a new method for assessment of errors in linearity. Angle Orthod 66:433–440

    PubMed  Google Scholar 

  13. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall Inc., New Jersey

    Google Scholar 

  14. Halazonetis DJ (2004) What features should I look for in a scanner? Am J Orthod Dentofacial Orthop 125:117–118

    Article  PubMed  Google Scholar 

  15. Halazonetis DJ (2004) At what resolution should I scan cephalometric radiographs? Am J Orthod Dentofacial Orthop 125:118–119

    Article  PubMed  Google Scholar 

  16. Ongkosuwito EM, Katsaros C, van’t Hof MA, Bodegom JC, Kuijpers-Jagtman AM (2002) The reproducibility of cephalometric measurements: a comparison of analogue and digital methods. Eur J Orthod 24:655–665

    Article  PubMed  Google Scholar 

  17. Held CL, Ferguson DJ, Gallo MW (2001) Cephalometric digitization: a determination of the minimum scanner settings necessary for precise landmark identification. Am J Orthod Dentofacial Orthop 119:472–481

    Article  PubMed  Google Scholar 

  18. Halazonetis DJ (2005) What do 8-bit and 12-bit grayscale mean and which should I use when scanning? Am J Orthod Dentofacial Orthop 127:387–388

    Article  PubMed  Google Scholar 

  19. Halazonetis DJ (2005) How can I eliminate noise in the dark areas when scanning radiographs or slides? Am J Orthod Dentofacial Orthop 127:83–84

    Article  PubMed  Google Scholar 

  20. Chadwick JW, Prentice RN, Major PW, Lam EW (2009) Image distortion and magnification of 3 digital CCD cephalometric systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:105–112

    Article  PubMed  Google Scholar 

  21. Uysal T, Baysal A, Yagci A (2009) Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod 31:523–528

    Article  PubMed  Google Scholar 

  22. Tsorovas G, Karsten AL (2010) A comparison of hand-tracing and cephalometric analysis computer programs with and without advanced features–accuracy and time demands. Eur J Orthod 32:721–728

    Article  PubMed  Google Scholar 

  23. Baumrind S, Miller DM (1980) Computer-aided head film analysis: the University of California San Francisco method. Am J Orthod 78:41–65

    Article  PubMed  Google Scholar 

  24. Macrì V, Wenzel A (1993) Reliability of landmark recording on film and digital lateral cephalograms. Eur J Orthod 15:137–148

    Article  PubMed  Google Scholar 

  25. Parker JR (1997) Algorithms for image processing and computer vision. Wiley, New York

    Google Scholar 

  26. Kazandjian S, Kiliaridis S, Mavropoulos A (2006) Validity and reliability of a new edge-based computerized method for identification of cephalometric landmarks. Angle Orthod 76:619–624

    PubMed  Google Scholar 

  27. Dibbets JMH, Nolte K (2002) Effect of magnification on lateral cephalometric studies. Am J Orthod Dentofacial Orthop 122:196–201

    Article  PubMed  Google Scholar 

  28. Björk A, Skieller V (1983) Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod 5:1–46

    Article  PubMed  Google Scholar 

  29. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  30. Lele S (1999) Invariance and morphometrics: a critical appraisal of statistical techniques for landmark data. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On growth and form. Spatio-temporal pattern formation in Biology. Wiley, New York

    Google Scholar 

  31. O’Higgins P (1999) Ontogeny and phylogeny: some morphometric approaches to skeletal growth and evolution. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On growth and form. Spatio-temporal pattern formation in Biology. Wiley, New York

    Google Scholar 

  32. Richtsmeier JT, Cheverud JM, Lele S (1992) Advances in anthropological morphometrics. Annu Rev Anthropol 21:283–305

    Article  Google Scholar 

  33. Cakirer B, Dean D, Palomo JM, Hans MG (2002) Orthognathic surgery outcome analysis: 3-dimensional landmark geometric morphometrics. Int J Adult Orthodon Orthognath Surg 17:116–132

    PubMed  Google Scholar 

  34. Singh GD, McNamara JA Jr, Lozanoff S (1998) Craniofacial heterogeneity of prepu-bertal Korean and European-American subjects with class III malocclusions: procrustes, EDMA, and cephalometric analyses. Int J Adult Orthodon Orthognath Surg 13:227–240

    PubMed  Google Scholar 

  35. Singh GD, Clark WJ (2001) Localization of mandibular changes in patients with class II division 1 malocclusions treated with twin-block appliances: finite element scaling analysis. Am J Orthod Dentofacial Orthop 119:419–425

    Article  PubMed  Google Scholar 

  36. Halazonetis DJ (2004) Morphometrics for cephalometric diagnosis. Am J Orthod Dentofacial Orthop 125:571–581

    Article  PubMed  Google Scholar 

  37. Chatzigianni A, Halazonetis DJ (2009) Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. Am J Orthod Dentofacial Orthop 136:481.e1–481.e9

    Article  Google Scholar 

  38. Bartzela T, Katsaros C, Rønning E, Rizell S, Semb G, Bronkhorst E, Halazonetis D, Kuijpers-Jagtman AM (2011) A longitudinal three-center study of craniofacial morphology at 6 and 12 years of age in patients with complete bilateral cleft lip and palate. Clin Oral Investig. doi:10.1007/s00784-011-0615-y

  39. Moyers RE, Bookstein FL (1979) The inappropriateness of conventional cephalometrics. Am J Orthod 75:599–617

    Article  PubMed  Google Scholar 

  40. Halazonetis DJ (1999) Morphing and warping. Part I. Am J Orthod Dentofacial Orthop 115:466–470

    Article  PubMed  Google Scholar 

  41. Halazonetis DJ (1999) Morphing and warping. Part II. Am J Orthod Dentofacial Orthop 115:706–708

    Article  PubMed  Google Scholar 

  42. Gomes J, Darsa L, Costa B, Velho L (1999) Warping and morphing of graphical objects. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  43. Beier T, Neely S (1992) Feature-based image metamorphosis. ACM SIGGRAPH Comput Graph 26:35–42

    Article  Google Scholar 

  44. Ackerman JL, Proffit WR (1995) Communication in orthodontic treatment planning: bioethical and informed consent issues. Angle Orthod 65:253–262

    PubMed  Google Scholar 

  45. Fink B, Grammer K, Thornhill R (2001) Human (Homo sapiens) facial attractiveness in relation to skin texture and color. J Comp Psychol 115:92–99

    Article  PubMed  Google Scholar 

  46. Giddon DB, Sconzo R, Kinchen JA, Evans CA (1996) Quantitative comparison of computerized discrete and animated profile preferences. Angle Orthod 66:441–448

    PubMed  Google Scholar 

  47. Halazonetis DJ (2002) Estimated natural head position and facial morphology. Am J Orthod Dentofacial Orthop 121:364–368

    Article  PubMed  Google Scholar 

  48. Lemley B (2000) Isn’t she lovely? Discover 21:42–49

    Google Scholar 

  49. Perrett DI, Lee KJ, Penton-Voak I, Rowland D, Yoshikawa S, Burt DM, Henzi SP, Castles DL, Akamatsu S (1998) Effects of sexual dimorphism on facial attractiveness. Nature 394:884–887

    Article  PubMed  Google Scholar 

  50. Spyropoulos MN, Halazonetis DJ (2001) Significance of the soft-tissue profile on facial esthetics. Am J Orthod Dentofacial Orthop 119:464–471

    Article  PubMed  Google Scholar 

  51. Karavaka SM, Halazonetis DJ, Spyropoulos MN (2008) Configuration of facial features influences subjective evaluation of facial type. Am J Orthod Dentofacial Orthop 133:277–282

    Article  PubMed  Google Scholar 

  52. Ngan DC, Kharbanda OP, Geenty JP, Darendeliler MA (2003) Comparison of radiation levels from computed tomography and conventional dental radiographs. Aust Orthod J 19:67–75

    PubMed  Google Scholar 

  53. Gijbels F, Sanderink G, Wyatt J, Van Dam J, Nowak B, Jacobs R (2003) Radiation doses of collimated vs non-collimated cephalometric exposures. Dentomaxillofac Radiol 32:128–133

    Article  PubMed  Google Scholar 

  54. Ludlow JB, Davies-Ludlow LE, Brooks SL (2003) Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and orthophos plus DS panoramic unit. Dentomaxillofac Radiol 32:229–234

    Article  PubMed  Google Scholar 

  55. Mah JK, Danforth RA, Bumann A, Hatcher D (2003) Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:508–513

    Article  PubMed  Google Scholar 

  56. European Commission (2004) Radiation protection 136. European guidelines on radiation protection in dental radiology. Luxembourg: Office for Official Publications of the European Communities. http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/136_en.pdf. Accessed 20 Jan 2012

  57. Hujoel P, Hollender L, Bollen AM, Young JD, McGee M, Grosso A (2008) Head-and-neck organ doses from an episode of orthodontic care. Am J Orthod Dentofacial Orthop 133:210–217

    Article  PubMed  Google Scholar 

  58. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, Cockmartin L, Bosmans H, Jacobs R, Bogaerts R, Horner K, The SEDENTEXCT Project Consortium (2012) Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 81:267–271

    Article  PubMed  Google Scholar 

  59. Isaacson K, Thom A, Horner K, Whaites E (2008) Guidelines for the use of radiographs in clinical orthodontics. British Orthodontic Society, London

    Google Scholar 

  60. SEDENTEXCT (2011) Radiation protection: cone beam CT for dental and maxillofacial radiology. Evidence based guidelines 2011. http://www.sedentexct.eu/files/guidelines_final.pdf. Accessed 20 Jan 2012

  61. Togashi K, Kitaura H, Yonetsu K, Yoshida N, Nakamura T (2002) Three-dimensional cephalometry using helical computer tomography: measurement error caused by head inclination. Angle Orthod 72:513–520

    PubMed  Google Scholar 

  62. Williams FL, Richtsmeier JT (2003) Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Clin Anat 16:494–500

    Article  PubMed  Google Scholar 

  63. Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG (2007) Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:534–542

    Article  PubMed  Google Scholar 

  64. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP (2006) Accuracy of three-­dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 35:410–416

    Article  PubMed  Google Scholar 

  65. Misch KA, Yi ES, Sarment DP (2006) Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol 77:1261–1266

    Article  PubMed  Google Scholar 

  66. Marmulla R, Wortche R, Muhling J, Hassfeld S (2005) Geometric accuracy of the NewTom 9000 cone beam CT. Dentomaxillofac Radiol 34:28–31

    Article  PubMed  Google Scholar 

  67. Gribel BF, Gribel MN, Frazäo DC, McNamara JA Jr, Manzi FR (2011) Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 81:26–35

    Article  PubMed  Google Scholar 

  68. Berco M, Rigali PH Jr, Miner RM, DeLuca S, Anderson NK, Will LA (2009) Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop 136:17.e1–17.e9

    Article  Google Scholar 

  69. Lagravère MO, Carey J, Toogood RW, Major PW (2008) Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 134:112–116

    Article  PubMed  Google Scholar 

  70. Baumgaertel S, Palomo JM, Palomo L, Hans MG (2009) Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 136:19–25

    Article  PubMed  Google Scholar 

  71. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691

    Article  PubMed  Google Scholar 

  72. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273

    Article  PubMed  Google Scholar 

  73. Bryant JA, Drage NA, Richmond S (2008) Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 37:365–374

    Article  PubMed  Google Scholar 

  74. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:829–836

    Article  PubMed  Google Scholar 

  75. Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R (2011) Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 22:873–879

    Article  PubMed  Google Scholar 

  76. Halazonetis DJ (2009) Commentary. Am J Orthod Dentofacial Orthop 136:25–28

    Article  Google Scholar 

  77. Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG (2008) Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop 134:573–582

    Article  PubMed  Google Scholar 

  78. Timock A, Cook V, McDonald T, Leo MC, Crowe J, Benninger B, Covell D (2011) Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofacial Orthop 140:734–744

    Article  PubMed  Google Scholar 

  79. Patcas R, Müller L, Ullrich L, Peltomäki T (2012) Cone-beam computed tomography and the anatomical reality of alveolar bone covering in the lower front. Am J Orthod Dentofacial Orthop 141:41–50

    Article  PubMed  Google Scholar 

  80. Leung CC, Palomo L, Griffith R, Hans MG (2010) Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 137(4 Suppl):S109–S119

    Article  PubMed  Google Scholar 

  81. Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H (2011) Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 139:e117–e127

    Article  PubMed  Google Scholar 

  82. Nguyen E, Boychuk D, Orellana M (2011) Accuracy of cone-beam computed tomography in predicting the diameter of unerupted teeth. Am J Orthod Dentofacial Orthop 140:e59–e66

    Article  PubMed  Google Scholar 

  83. Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136:312.e1–312.e10

    Article  Google Scholar 

  84. Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y (2011) Reliability and the smallest detectable difference of measurements on 3-dimensional cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 140:e107–e114

    Article  PubMed  Google Scholar 

  85. Halazonetis DJ (2001) Acquisition of 3-dimensional shapes from images. Am J Orthod Dentofacial Orthop 119:556–560

    Article  PubMed  Google Scholar 

  86. Klette R, Schlüns K, Koschan A (1998) Computer vision. Three-dimensional data from images. Springer-Verlag Singapore Pte. Ltd., Singapore

    Google Scholar 

  87. Hennessy RJ, Moss JP (2001) Facial growth: separating shape from size. Eur J Orthod 23:275–285

    Article  PubMed  Google Scholar 

  88. Ismail SF, Moss JP, Hennessy R (2002) Three-dimensional assessment of the effects of extraction and nonextraction orthodontic treatment on the face. Am J Orthod Dentofacial Orthop 121:244–256

    Article  PubMed  Google Scholar 

  89. Moss JP, Linney AD, Grindrod SR, Arridge SR, Clifton JS (1987) Three-dimensional visualization of the face and skull using computerized tomography and laser scanning techniques. Eur J Orthod 9:247–253

    PubMed  Google Scholar 

  90. Moss JP (2000) 2D or not 2D? That is the question. Am J Orthod Dentofacial Orthop 117:580–581

    Article  PubMed  Google Scholar 

  91. Marcel TJ (2001) Three-dimensional on-screen virtual models. Am J Orthod Dentofacial Orthop 119:666–668

    Article  PubMed  Google Scholar 

  92. Garino F, Garino B (2003) From digital casts to digital occlusal set-up: an enhanced diagnostic tool. World J Orthod 4:162–166

    Google Scholar 

  93. Redmond WJ, Redmond MJ, Redmond WR (2004) The OrthoCAD bracket placement solution. Am J Orthod Dentofacial Orthop 125:645–646

    Article  PubMed  Google Scholar 

  94. Bell A, Ayoub AF, Siebert P (2003) Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30:219–223

    Article  PubMed  Google Scholar 

  95. Kuo E, Miller RJ (2003) Automated custom-manufacturing technology in orthodontics. Am J Orthod Dentofacial Orthop 123:578–581

    Article  PubMed  Google Scholar 

  96. Kusnoto B, Evans CA (2002) Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofacial Orthop 122:342–348

    Article  PubMed  Google Scholar 

  97. Whetten JL, Williamson PC, Heo G, Varnhagen C, Major PW (2006) Variations in orthodontic treatment planning decisions of class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 130:485–491

    Article  PubMed  Google Scholar 

  98. Tomassetti JJ, Taloumis LJ, Denny JM, Fischer JR Jr (2001) A comparison of 3 computerized Bolton tooth-size analyses with a commonly used method. Angle Orthod 71:351–357

    PubMed  Google Scholar 

  99. Zilberman O, Huggare JAV, Parikakis KA (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 73:301–306

    PubMed  Google Scholar 

  100. Sjögren AP, Lindgren JE, Huggare JA (2010) Orthodontic study cast analysis–reproducibility of recordings and agreement between conventional and 3D virtual measurements. J Digit Imaging 23:482–492

    Article  PubMed  Google Scholar 

  101. Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124:101–105

    Article  PubMed  Google Scholar 

  102. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136:16.e1–16.e4

    Article  Google Scholar 

  103. Koch RM, Gross MH, Carls FR, von Bueren DF, Fankhauser G, Parish YIH (1996) Simulating facial surgery using finite element models. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pp 421–428, doi: 10.1145/237170.237281

    Google Scholar 

  104. Koch RM, Roth SHM, Gross MH, Zimmermann AP, Sailer HF (2002) A framework for facial surgery simulation. Proceedings of ACM SCCG 2002, pp 33–42, doi: 10.1145/584458.584464

    Google Scholar 

  105. Lee Y, Terzopoulos D, Waters K (1995) Realistic facial modeling for animation. In: Computer graphics proceedings, annual conference series. ACM SIGGRAPH, Los Angeles, pp 55–62

    Google Scholar 

  106. Meehan M, Teschner M, Girod S (2003) Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res 6:102–107

    Article  PubMed  Google Scholar 

  107. Parke FI, Waters K (1996) Computer facial animation. A K Peters, Ltd., Wellesley

    Google Scholar 

  108. Teschner M, Girod S, Girod B (1999) Interactive osteotomy simulation and soft-tissue prediction. Proc Vision, Modeling, Visualization VMV’99, Erlangen, pp 405–412

    Google Scholar 

  109. Zhang Y, Prakash EC, Sung E (2002) Constructing a realistic face model of an individual for expression animation. Int J Inf Technol 8:10–25

    Google Scholar 

  110. Halazonetis DJ (1996) Computer experiments using a two-dimensional model of tooth support. Am J Orthod Dentofacial Orthop 109:598–606

    Article  PubMed  Google Scholar 

  111. Jeon PD, Turley PK, Ting K (2001) Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss. Am J Orthod Dentofacial Orthop 119:498–504

    Article  PubMed  Google Scholar 

  112. Kawarizadeh A, Bourauel C, Jäger A (2003) Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur J Orthod 25:569–578

    Article  PubMed  Google Scholar 

  113. Poppe M, Bourauel C, Jager A (2002) Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 63:358–370

    Article  PubMed  Google Scholar 

  114. Rudolph DJ, Willes PMG, Sameshima GT (2001) A finite element model of apical force distribution from orthodontic tooth movement. Angle Orthod 71:127–131

    PubMed  Google Scholar 

  115. Tanne K, Sakuda M, Burstone CJ (1987) Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 92:499–505

    Article  PubMed  Google Scholar 

  116. Toms SR, Eberhardt AW (2003) A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 123:657–665

    Article  PubMed  Google Scholar 

  117. Vanderby R Jr, Burstone CJ, Solonche DJ, Ratches JA (1977) Experimentally determined force systems from vertically activated orthodontic loops. Angle Orthod 47:272–279

    PubMed  Google Scholar 

  118. Beer FP, Johnston ER (1981) Mechanics of materials. McGraw-Hill, New York

    Google Scholar 

  119. DeFranco JC, Koenig HA, Burstone CJ (1976) Three-dimensional large displacement analysis of orthodontic appliances. J Biomech 9:793–801

    Article  PubMed  Google Scholar 

  120. Halazonetis DJ (1997) Design and test orthodontic loops using your computer. Am J Orthod Dentofacial Orthop 111:346–348

    Article  PubMed  Google Scholar 

  121. Halazonetis DJ (1998) Understanding orthodontic loop preactivation. Am J Orthod Dentofacial Orthop 113:237–241

    Article  PubMed  Google Scholar 

  122. Koenig HA, Burstone CJ (1974) Analysis of generalized curved beams for orthodontic applications. J Biomech 7:429–435

    Article  PubMed  Google Scholar 

  123. Bourauel C, Drescher D, Ebling J, Broome D, Kanarachos A (1997) Superelastic nickel titanium alloy retraction springs–an experimental investigation of force systems. Eur J Orthod 19:491–500

    Article  PubMed  Google Scholar 

  124. Chen J, Markham DL, Katona TR (2000) Effects of T-loop geometry on its forces and moments. Angle Orthod 70:48–51

    PubMed  Google Scholar 

  125. Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178

    Article  PubMed  Google Scholar 

  126. Menghi C, Planert J, Melsen B (1999) 3-D experimental identification of force systems from orthodontic loops activated for first order corrections. Angle Orthod 69:49–57

    PubMed  Google Scholar 

  127. Siatkowski RE (1997) Continuous arch wire closing loop design, optimization, and verification. Part I. Am J Orthod Dentofacial Orthop 112:393–402

    Article  PubMed  Google Scholar 

  128. Sifakakis I, Pandis N, Makou M, Eliades T, Bourauel C (2010) A comparative assessment of the forces and moments generated with various maxillary incisor intrusion biomechanics. Eur J Orthod 32:159–164

    Article  PubMed  Google Scholar 

  129. Gjessing P (1985) Biomechanical design and clinical evaluation of a new canine-retraction spring. Am J Orthod 87:353–362

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios J. Halazonetis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halazonetis, D.J. (2013). Computers in Orthodontic Research. In: Eliades, T. (eds) Research Methods in Orthodontics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31377-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31377-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31376-9

  • Online ISBN: 978-3-642-31377-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics