Advertisement

An Overview of Research Methods on Orthodontic Alloys and Ceramics

  • Spiros Zinelis
  • William A. Brantley
Chapter

Abstract

The chapter describes some important experimental techniques for the characterization of ceramic and metallic orthodontic materials. The first part focuses on mechanical and electrochemical testing as well as on DSC and XRD analysis. The second part deals with the metallographic preparation and light and electron microscopic analysis of orthodontic alloys and ceramic. Electron probe microanalysis (EPMA) along with the recently introduced X- ray micro computed tomography techniques are also presented.

Keywords

Wire Alloy NiTi Wire Metallographic Preparation Orthodontic Bracket Primary Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brantley WA, Eliades T (eds) (2001) Orthodontic materials: scientific and clinical aspects. Thieme, Stuttgart, Chapters 2–4, 7 and 8Google Scholar
  2. 2.
    Miura F, Mogi M, Ohura Y, Hamanaka H (1986) The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 90:1–10PubMedCrossRefGoogle Scholar
  3. 3.
    Anusavice KJ et al (2003) Mechanical properties of dental materials. In: Phillips’ science of dental materials, 11th edn. Saunders/Elsevier Science, St. Louis, Chapter 4Google Scholar
  4. 4.
    Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York, Chapters 8 and 11Google Scholar
  5. 5.
    Asgharnia MK, Brantley WA (1986) Comparison of bending and tension tests for orthodontic wires. Am J Orthod 89:228–236PubMedCrossRefGoogle Scholar
  6. 6.
    Verstrynge A, Van Humbeeck J, Willems G (2006) In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 130:460–470PubMedCrossRefGoogle Scholar
  7. 7.
    Burstone CJ, Goldberg AJ (1983) Maximum forces and deflections from orthodontic appliances. Am J Orthod 84:95–103PubMedCrossRefGoogle Scholar
  8. 8.
    Burstone CJ, Qin B, Morton JY (1985) Chinese NiTi wire – a new orthodontic alloy. Am J Orthod 87:445–452PubMedCrossRefGoogle Scholar
  9. 9.
    Andreasen GF, Morrow RE (1978) Laboratory and clinical analyses of nitinol wire. Am J Orthod 73:142–151PubMedCrossRefGoogle Scholar
  10. 10.
    Khier SE, Brantley WA, Fournelle RA (1991) Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 99:310–318PubMedCrossRefGoogle Scholar
  11. 11.
    American Dental Association Specification No. 32 for orthodontic wires not containing precious metals (1977) J Am Dent Assoc 95:1169–1171Google Scholar
  12. 12.
    American Dental Association/Council on Scientific Affairs. ANSI/ADA Specification No. 32– Orthodontic Wires (2000)Google Scholar
  13. 13.
    Scott GE Jr (1988) Fracture toughness and surface cracks – the key to understanding ceramic brackets. Angle Orthod 58:5–8PubMedGoogle Scholar
  14. 14.
    Kusy RP (1988) Morphology of polycrystalline alumina brackets and its relationship to fracture toughness and strength. Angle Orthod 58:197–203PubMedGoogle Scholar
  15. 15.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, pp 791–797Google Scholar
  16. 16.
    Taira M, Nomura Y, Wakasa K, Yamaki M, Matsui A (1990) Studies on fracture toughness of dental ceramics. J Oral Rehabil 17:551–563PubMedCrossRefGoogle Scholar
  17. 17.
    Scherrer SS, Kelly JR, Quinn GD, Xu K (1999) Fracture toughness (KIc) of a dental porcelain determined by fractographic analysis. Dent Mater 15:342–348PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer H, Marx R (2002) Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater 18:12–19PubMedCrossRefGoogle Scholar
  19. 19.
    Maehara S, Fujishima A, Hotta Y, Miyazaki T (2005) Fracture toughness measurement of dental ceramics using the indentation fracture method with different formulas. Dent Mater J 24:328–334PubMedCrossRefGoogle Scholar
  20. 20.
    Wang H, Pallav P, Isgro G, Feilzer AJ (2007) Fracture toughness comparison of three test methods with four dental porcelains. Dent Mater 23:905–910PubMedCrossRefGoogle Scholar
  21. 21.
    Morena R, Lockwood PE, Fairhurst CW (1986) Fracture toughness of commercial dental porcelains. Dent Mater 2:58–62PubMedCrossRefGoogle Scholar
  22. 22.
    Smart K, Lancaster D, Sarkar N (1992) Microstructure and fracture toughness of three ceramic brackets. J Dent Res 71(AADR Abstracts):227Google Scholar
  23. 23.
    Pham GN (1999) Fracture characteristics of five polycrystalline alumina orthodontic brackets [MS thesis]. The Ohio State University, ColumbusGoogle Scholar
  24. 24.
    Pham GN, Brantley WA, Mitchell JC, Johnston WM, Webb CS (2000) Fracture characteristics, hardness and grain size of five alumina brackets. J Dent Res 79(IADR Abstracts):548Google Scholar
  25. 25.
    Tilson TF (1994) Evaluation of the fracture toughness of the Japanese Yttrium-stabilized Zirconia orthodontic brackets and possible clinical implications [MS thesis]. The Ohio State University, ColumbusGoogle Scholar
  26. 26.
    Tilson TF, Brantley WA, Johnston WM (1995) Fracture toughness of zirconia ceramic orthodontic brackets. J Dent Res 74(AADR Abstracts):74Google Scholar
  27. 27.
    Fiss MR (2002) Breaking force of ceramic bracket Tie-wings: a comparative study [MS thesis]. The Ohio State University, ColumbusGoogle Scholar
  28. 28.
    Mante FK, Brantley WA, Dhuru VB, Ziebert GJ (1993) Fracture toughness of high alumina core dental ceramics: the effect of water and artificial saliva. Int J Prosthodont 6:546–552PubMedGoogle Scholar
  29. 29.
    Sarkar NK, Redmond W, Schwaninger B, Goldberg AJ (1983) The chloride corrosion behaviour of four orthodontic wires. J Oral Rehabil 10:121–128PubMedCrossRefGoogle Scholar
  30. 30.
    Edie JW, Andreasen GF, Zaytoun MP (1981) Surface corrosion of nitinol and stainless steel under clinical conditions. Angle Orthod 51:319–324PubMedGoogle Scholar
  31. 31.
    Schwaninger B, Sarkar NK, Foster BE (1982) Effect of long-term immersion corrosion on the flexural properties of nitinol. Am J Orthod 82:45–49PubMedCrossRefGoogle Scholar
  32. 32.
    Khier SE (1988) Structural characterization, biomechanical properties, and potentiodynamic polarization behavior of Nickel-Titanium orthodontic wire alloys [PhD dissertation]. Marquette University, MilwaukeeGoogle Scholar
  33. 33.
    Khier SE, Brantley WA (1997) In vitro corrosion measurements of Ni-Ti wrought alloys. Saudi Dent J 9:14–16Google Scholar
  34. 34.
    Anusavice KJ, Brantley WA (2003) Physical properties of dental materials. In: Anusavice KJ (ed) Phillips’ science of dental materials, 11th edn. Saunders/Elsevier Science, St. Louis, Chapter 3Google Scholar
  35. 35.
    Kim H, Johnson JW (1999) Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod 69:39–44PubMedGoogle Scholar
  36. 36.
    Huang HH (2005) Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res A 74:629–639PubMedGoogle Scholar
  37. 37.
    Clarke B, Carroll W, Rochev Y, Hynes M, Bradley D, Plumley D (2006) Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J Biomed Mater Res A 79:61–70PubMedGoogle Scholar
  38. 38.
    Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC (2003) Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24:3585–3592PubMedCrossRefGoogle Scholar
  39. 39.
    Yonekura Y, Endo K, Iijima M, Ohno H, Mizoguchi I (2004) In vitro corrosion characteristics of commercially available orthodontic wires. Dent Mater J 23:197–202PubMedCrossRefGoogle Scholar
  40. 40.
    Oh KT, Kim KN (2005) Ion release and cytotoxicity of stainless steel wires. Eur J Orthod 27:533–540PubMedCrossRefGoogle Scholar
  41. 41.
    Schiff N, Boinet M, Morgon L, Lissac M, Dalard F, Grosgogeat B (2006) Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. Eur J Orthod 28:298–304PubMedCrossRefGoogle Scholar
  42. 42.
    Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M, Mizoguchi I (2006) Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod 76:705–711PubMedGoogle Scholar
  43. 43.
    Darabara MS, Bourithis LI, Zinelis S, Papadimitriou GD (2007) Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires. J Biomed Mater Res B Appl Biomater 81:126–134PubMedGoogle Scholar
  44. 44.
    Siargos B, Bradley TG, Darabara M, Papadimitriou G, Zinelis S (2007) Galvanic corrosion of metal injection molded (MIM) and conventional brackets with nickel-titanium and copper-nickel-titanium archwires. Angle Orthod 77:355–360PubMedCrossRefGoogle Scholar
  45. 45.
    Rondelli G, Vicentini B (1999) Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires. Biomaterials 20:785–792PubMedCrossRefGoogle Scholar
  46. 46.
    Neumann P, Bourauel C, Jäger A (2002) Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J Mater Sci Mater Med 13:141–147PubMedCrossRefGoogle Scholar
  47. 47.
    Es-Souni M, Es-Souni M, Fischer-Brandies H (2002) On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials 23:2887–2894PubMedCrossRefGoogle Scholar
  48. 48.
    Huang HH (2005) Variation in corrosion resistance of nickel-titanium wires from different manufacturers. Angle Orthod 75:661–665PubMedGoogle Scholar
  49. 49.
    Pun DK, Berzins DW (2008) Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent Mater 24:221–227PubMedCrossRefGoogle Scholar
  50. 50.
    Wang J, Li N, Rao G, Han EH, Ke W (2007) Stress corrosion cracking of NiTi in artificial saliva. Dent Mater 23:133–137PubMedCrossRefGoogle Scholar
  51. 51.
    Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagumo M (2003) Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials 24:2113–2120PubMedCrossRefGoogle Scholar
  52. 52.
    Ogawa T, Yokoyama K, Asaoka K, Sakai J (2004) Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions. Biomaterials 25:2419–2425PubMedCrossRefGoogle Scholar
  53. 53.
    Schiff N, Grosgogeat B, Lissac M, Dalard F (2004) Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials 25:4535–4542PubMedCrossRefGoogle Scholar
  54. 54.
    Yokoyama K, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai J (2005) Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions. Biomaterials 26:101–108PubMedCrossRefGoogle Scholar
  55. 55.
    Walker MP, White RJ, Kula KS (2005) Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. Am J Orthod Dentofacial Orthop 127:662–669PubMedCrossRefGoogle Scholar
  56. 56.
    Cioffi M, Gilliland D, Ceccone G, Chiesa R, Cigada A (2005) Electrochemical release testing of nickel-titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomater 1:717–724PubMedCrossRefGoogle Scholar
  57. 57.
    Ahn HS, Kim MJ, Seol HJ, Lee JH, Kim HI, Kwon YH (2006) Effect of pH and temperature on orthodontic NiTi wires immersed in acidic fluoride solution. J Biomed Mater Res B Appl Biomater 79:7–15PubMedGoogle Scholar
  58. 58.
    Kao CT, Ding SJ, He H, Chou MY, Huang TH (2007) Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro. Angle Orthod 77:349–354PubMedCrossRefGoogle Scholar
  59. 59.
    Li X, Wang J, Han EH, Ke W (2007) Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomater 3:807–815PubMedCrossRefGoogle Scholar
  60. 60.
    Eliades T, Eliades G, Athanasiou AE, Bradley TG (2000) Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod 22:317–326PubMedCrossRefGoogle Scholar
  61. 61.
    Eliades T, Zinelis S, Papadopoulos MA, Eliades G, Athanasiou AE (2004) Nickel content of as-received and retrieved NiTi and stainless steel archwires: assessing the nickel release hypothesis. Angle Orthod 74:151–154PubMedGoogle Scholar
  62. 62.
    Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381:557–567PubMedCrossRefGoogle Scholar
  63. 63.
    Es-Souni M, Fischer-Brandies H, Es-Souni M (2003) On the in vitro biocompatibility of Elgiloy, a Co-based alloy, compared to two titanium alloys. J Orofac Orthop 64:16–26PubMedCrossRefGoogle Scholar
  64. 64.
    Cullity BD, Stock SR (2001) Elements of x-ray diffraction, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  65. 65.
    Khier SE, Brantley WA, Fournelle RA (1988) Structure and mechanical properties of as-received and heat-treated stainless steel orthodontic wires. Am J Orthod Dentofacial Orthop 93:206–212PubMedCrossRefGoogle Scholar
  66. 66.
    Brantley W, Webb C, Soto U, Wu Q, Cassinelli A (1998) X-ray diffraction and Vickers hardness of titanium-containing orthodontic wires. J Dent Res 77(AADR Abstracts):108Google Scholar
  67. 67.
    Thayer TA, Bagby MD, Moore RN, DeAngelis RJ (1995) X-ray diffraction of nitinol orthodontic arch wires. Am J Orthod Dentofacial Orthop 107:604–612PubMedCrossRefGoogle Scholar
  68. 68.
    Mitchell JC, Brantley WA, Tufekci E, Webb CS (2000) X-ray diffraction analyses of cross-sectioned specimens of titanium-containing orthodontic wires. J Dent Res 79(IADR Abstracts):439Google Scholar
  69. 69.
    Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002) Mechanical behavior at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures. Dent Mater 18:88–93PubMedCrossRefGoogle Scholar
  70. 70.
    Iijima M, Ohno H, Kawashima I, Endo K, Brantley WA, Mizoguchi I (2002) Micro x-ray diffraction study of superelastic nickel-titanium orthodontic wires at different temperatures and stresses. Biomaterials 23:1769–1774PubMedCrossRefGoogle Scholar
  71. 71.
    Iijima M, Brantley WA, Kawashima I, Ohno H, Guo W, Yonekura Y, Mizoguchi I (2004) Micro-x-ray diffraction observation of nickel-titanium orthodontic wires in simulated oral environment. Biomaterials 25:171–176PubMedCrossRefGoogle Scholar
  72. 72.
    Iijima M, Brantley WA, Baba N, Alapati SB, Yuasa T, Ohno H, Mizoguchi I (2007) Micro-XRD study of beta-titanium wires and infrared soldered joints. Dent Mater 23:1051–1056PubMedCrossRefGoogle Scholar
  73. 73.
    Iijima M, Brantley WA, Yuasa T, Muguruma T, Kawashima I, Mizoguchi I (2008) Joining characteristics of orthodontic wires with laser welding. J Biomed Mater Res B Appl Biomater 84:147–153PubMedGoogle Scholar
  74. 74.
    Lee JH, Park JB, Andreasen GF, Lakes RS (1988) Thermomechanical study of Ni-Ti alloys. J Biomed Mater Res 22:573–588PubMedCrossRefGoogle Scholar
  75. 75.
    Yoneyama T, Doi H, Hamanaka H, Okamoto Y, Mogi M, Miura F (1992) Super-elasticity and thermal behavior of Ni-Ti alloy orthodontic arch wires. Dent Mater J 11:1–10PubMedCrossRefGoogle Scholar
  76. 76.
    Bradley TG, Brantley WA, Culbertson BM (1996) Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 109:589–597PubMedCrossRefGoogle Scholar
  77. 77.
    Barwart O, Rollinger JM, Burger A (1999) An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry. Eur J Orthod 21:497–502PubMedCrossRefGoogle Scholar
  78. 78.
    Fischer-Brandies H, Es-Souni M, Kock N, Raetzke K, Bock O (2003) Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016″  ×  0.022″ NiTi archwires. J Orofac Orthop 64:88–99PubMedCrossRefGoogle Scholar
  79. 79.
    Chen R, Zhi YF, Arvystas MG (1992) Advanced Chinese NiTi alloy wire and clinical observations. Angle Orthod 62:59–66PubMedGoogle Scholar
  80. 80.
    Santoro M, Beshers DN (2000) Nickel-titanium alloys: stress-related temperature transitional range. Am J Orthod Dentofacial Orthop 118:685–692PubMedCrossRefGoogle Scholar
  81. 81.
    Sauerbrunn SR, Crowe BS, Reading M (1993) Modulated differential scanning calorimetry, Polym Mater Sci Eng 68:269–271Google Scholar
  82. 82.
    Reading M, Hahn BK, Crowe BS (1994) Method and apparatus for modulated differential scanning calorimetry. US Patent 5,346,306, 13 Sept1994Google Scholar
  83. 83.
    Brantley WA, Iijima M, Grentzer TH (2003) Temperature-modulated DSC provides new insight about nickel-titanium wire transformations. Am J Orthod Dentofacial Orthop 124:387–394PubMedCrossRefGoogle Scholar
  84. 84.
    Brantley WA, Guo W, Clark WAT, Iijima M (2008) Microstructural studies of 35°C Copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation. Dent Mater 24:204–210PubMedCrossRefGoogle Scholar
  85. 85.
    Brantley WA, Iijima M, Grentzer TH (2002) Temperature-modulated DSC study of phase transformations in nickel-titanium orthodontic wires. Thermochimica Acta 392–393:329–337CrossRefGoogle Scholar
  86. 86.
    Metallography and microstructures, vol 9, 1st edn (1985). Materials Park: ASM International, pp 23–27, 28–32Google Scholar
  87. 87.
    Samuels LE (1985) Mechanical grinding abrasion and polishing. In: Metallography and microstructures, vol 9, 1st edn. ASM International, Materials Park, pp 33–47Google Scholar
  88. 88.
    Zinelis S, Annousaki O, Makou M, Eliades T (2005) Metallurgical characterization of orthodontic brackets produced by metal injection molding (MIM). Angle Orthod 75:811–818Google Scholar
  89. 89.
    Zinelis S, Annousaki O, Eliades T, Makou M (2003) Characterization of Titanium orthodontic brackets. J Orofac Orthop 64:426–433PubMedCrossRefGoogle Scholar
  90. 90.
    Eliades T, Zinelis S, Eliades G, Athanasiou T (2003) Characterization of as-received, retrieved and recycled stainless steel brackets. J Orofac Orthop 64:80–87PubMedCrossRefGoogle Scholar
  91. 91.
    Zinelis S, Eliades T, Pandis N, Eliades G, Bourauel C (2007) Why do NiTi and CuNiTi archwires fracture intraorally? Fractographic analysis and failure mechanism of in vivo-fractured wires. Am J Orthod Dentofacial Orthop 132:84–89PubMedCrossRefGoogle Scholar
  92. 92.
    Zinelis S, Annousaki O, Eliades T, Makou M (2004) Elemental composition of brazing alloys in metallic orthodontic brackets. Angle Orthod 74:394–399PubMedGoogle Scholar
  93. 93.
    Eliades G, Brantley WA (2001) Instrumental techniques for study of orthodontic materials. In: Brantley WA, Eliades T (eds) Orthodontic materials: scientific and clinical aspects. Thieme, Stuttgart, Chapter 3Google Scholar
  94. 94.
    Schuster S, Eliades G, Zinelis S, Eliades T, Bradley G (2004) Structural conformation and leaching from in vitro-aged and retrieved Invisalign appliances. Am J Orthod Dentofacial Orthop 126:725–728PubMedCrossRefGoogle Scholar
  95. 95.
    Natali AN, Viola MM (2003) Computer tomography for virtual models in dental imaging. In: Natali AN (ed) Dental biomechanics. Taylor & Francis, London, Chapter 3CrossRefGoogle Scholar
  96. 96.
    Gioka C, Bourauel C, Zinelis S, Eliades T, Silikas N, Eliades G (2004) Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent Mater 20:693–700PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiomaterialsSchool of Dentistry, University of AthensAthensGreece
  2. 2.Division of Restorative, Prosthetic and Primary Care Dentistry, College of DentistryThe Ohio State UniversityColumbusUSA

Personalised recommendations