Abstract
Ellipses are ubiquitous in mathematical texts. They allow writing sequences of terms or formulas in a concise way. In this paper, we show how ellipses are incorporated into the Mizar language and how they are verified by the Mizar proof checker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mizar homepage, http://mizar.org/
Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning, Special Issue: User Tutorials I 3(2), 153–245 (2010)
Bancerek, G.: The fundamental properties of natural numbers. Formalized Mathematics 1(1), 41–46 (1990)
Horozal, F., Kohlhase, M., Rabe, F.: Extending OpenMath with Sequences. In: Asperti, A., Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.) Intelligent Computer Mathematics, Work-in-Progress Proceedings, Volume UBLCS-2011-04 of Technical Report, University of Bologna, pp. 58–72 (2011)
Bundy, A., Richardson, J.: Proofs About Lists Using Ellipsis. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 1–12. Springer, Heidelberg (1999)
Sexton, A.P., Sorge, V.: Abstract matrices in symbolic computation. In: Dumas, J.G. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC), Genova, Italy, pp. 318–325. ACM Press (July 2006)
Łukaszewicz, L.: Triple dots in a formal language. Journal of Automated Reasoning 22, 223–239 (1999)
Jaśkowski, S.: On the rules of suppositions in formal logic. Studia logica. Nakładem Seminarjum Filozoficznego Wydziału Matematyczno-Przyrodniczego Uniwersytetu Warszawskiego (1934)
Fitch, F.B.: Symbolic logic, an introduction. Ronald Press Co., New York (1952)
Ono, K.: On a practical way of describing formal deductions. Nagoya Mathematical Journal 21, 115–121 (1962)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korniłowicz, A. (2012). Tentative Experiments with Ellipsis in Mizar. In: Jeuring, J., et al. Intelligent Computer Mathematics. CICM 2012. Lecture Notes in Computer Science(), vol 7362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31374-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-31374-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31373-8
Online ISBN: 978-3-642-31374-5
eBook Packages: Computer ScienceComputer Science (R0)