Advertisement

A Combinator Language for Theorem Discovery

  • Phil Scott
  • Jacques Fleuriot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

We define and implement a combinator language for intermediate lemma discovery. We start by generalising an algebraic data-structure for unbounded search and then extend it to support case-analysis. With our language defined, we expect users to be able to write discoverers which collaborate intelligently in specific problem domains. For now, the language integrates rewriting, forward-deduction, and case-analysis and discovers lemmas concurrently based on an interactive proof context. We argue that the language is most suitable for adding domain-specific automation to mechanically formalised proofs written in a forward-style, and we show how the language is used via a case-study in geometry.

Keywords

Interactive Proof Interactive Theorem Prove Dependent Tactic Combinator Language Modus Ponens Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical discovery. Int. J. Hum.-Comput. Stud. 53(3), 351–375 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–185. MIT Press, Cambridge (2000)Google Scholar
  3. 3.
  4. 4.
    Hales, T.: Formal proof. Notices of the American Mathematical Society 55, 1370–1381 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Harrison, J.: HOL Light: a Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    McCasland, R.L., Bundy, A.: MATHsAiD: A Mathematical Theorem Discovery Tool. In: SYNASC, pp. 17–22 (2006)Google Scholar
  7. 7.
    Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Milner, R., Bird, R.S.: The Use of Machines to Assist in Rigorous Proof [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 312(1522), 411–422 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Milner, R., Tofte, M., Harper, R., Macqueen, D.: The Definition of Standard ML - Revised. The MIT Press, rev. sub. edn. (May 1997)Google Scholar
  10. 10.
    Moore, E.H.: On the Projective Axioms of Geometry. Transactions of the American Mathematical Society 3, 142–158 (1902)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Scott, P.: Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s thesis, University of Edinburgh (2008)Google Scholar
  12. 12.
    Scott, P., Fleuriot, J.: Composable Discovery Engines for Interactive Theorem Proving. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 370–375. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Spivey, J.M.: Algebras for combinatorial search. Journal of Functional Programming 19(3-4), 469–487 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Swierstra, S.D., Alcocer, P.R.A., Saraiva, J.: Designing and Implementing Combinator Languages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp. 150–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Wadler, P.: Monads for Functional Programming. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Phil Scott
    • 1
  • Jacques Fleuriot
    • 1
  1. 1.School of InformaticsUniversity of EdinburghUK

Personalised recommendations