Advertisement

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases

  • David J. Wilson
  • Russell J. Bradford
  • James H. Davenport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

Gröbner Bases [Buc70] and Cylindrical Algebraic Decomposition [Col75,CMMXY09] are generally thought of as two, rather different, methods of looking at systems of equations and, in the case of Cylindrical Algebraic Decomposition, inequalities. However, even for a mixed system of equalities and inequalities, it is possible to apply Gröbner bases to the (conjoined) equalities before invoking CAD. We see that this is, quite often but not always, a beneficial preconditioning of the CAD problem.

It is also possible to precondition the (conjoined) inequalities with respect to the equalities, and this can also be useful in many cases.

Keywords

Time Cell Triangular Decomposition Decrease Factor Regular Chain Real Close Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALMM99]
    Aubry, P., Lazard, D., Moreno Maza, M.: On the Theories of Triangular Sets. J. Symbolic Comp. 28, 105–124 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BGK85]
    Böge, W., Gebauer, R., Kredel, H.: Gröbner Bases Using SAC2. In: Caviness, B.F. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp. 272–274. Springer, Heidelberg (1985)Google Scholar
  3. [BH91]
    Buchberger, B., Hong, H.: Speeding-up Quantifier Elimination by Gröbner Bases. Technical Report 91-06 (1991)Google Scholar
  4. [Bro03]
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)zbMATHCrossRefGoogle Scholar
  5. [Bro04]
  6. [Bro05]
    Brown, C.W.: SLFQ — simplifying large formulas with QEPCAD B (2005), http://www.cs.usna.edu/~qepcad/SLFQ/Home.html
  7. [Buc70]
    Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystem (English translation in [Buc98]). Aequationes Mathematicae 4, 374–383 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Buc98]
    Buchberger, B.: An Algorithmic Criterion for the Solvability of a System of Algebraic Equations. In: Gröbner Bases and Applications, pp. 535–545 (1998)Google Scholar
  9. [CH91]
    Collins, G.E., Hong, H.: Partial Cylindrical Algebraic Decomposition for Quantifier Elimination. J. Symbolic Comp. 12, 299–328 (1991)MathSciNetCrossRefGoogle Scholar
  10. [CMMXY09]
    Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing Cylindrical Algebraic Decomposition via Triangular Decomposition. In: May, J. (ed.) Proceedings ISSAC 2009, pp. 95–102 (2009)Google Scholar
  11. [Col75]
    Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In: Proceedings 2nd GI Conference Automata Theory & Formal Languages, pp. 134–183 (1975)Google Scholar
  12. [DSS04]
    Dolzmann, A., Seidl, A., Sturm, T.: Efficient Projection Orders for CAD. In: Gutierrez, J. (ed.) Proceedings ISSAC 2004, pp. 111–118 (2004)Google Scholar
  13. [Gia89]
    Gianni, P.: Properties of Gröbner Bases Under Specializations. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  14. [Kal89]
    Kalkbrener, M.: Solving Systems of Algebraic Equations by Using Gröbner Bases. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 282–292. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  15. [MM05]
    Moreno Maza, M.: On Triangular Decompositions of Algebraic Varieties (2005), http://www.csd.uwo.ca/~moreno/Publications/M3-MEGA-2005.pdf
  16. [Phi11]
    Phisanbut, N.: Practical Simplification of Elementary Functions using Cylindrical Algebraic Decomposition. PhD thesis, University of Bath (2011)Google Scholar
  17. [PQR09]
    Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. [Tar51]
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. Univ. Cal. Press (1951)Google Scholar
  19. [Wil12]
    Wilson, D.J.: Real Geometry and Connectness via Triangular Description: CAD Example Bank (2012), http://opus.bath.ac.uk/29503

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David J. Wilson
    • 1
  • Russell J. Bradford
    • 1
  • James H. Davenport
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathU.K.

Personalised recommendations