A Query Language for Formal Mathematical Libraries

  • Florian Rabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

One of the most promising applications of mathematical knowledge management is search: Even if we restrict attention to the tiny fragment of mathematics that has been formalized, the amount exceeds the comprehension of an individual human.

Based on the generic representation language MMT, we introduce the mathematical query language QMT: It combines simplicity, expressivity, and scalability while avoiding a commitment to a particular logical formalism. QMT can integrate various search paradigms such as unification, semantic web, or XQuery style queries, and QMT queries can span different mathematical libraries.

We have implemented QMT as a part of the MMT API. This combination provides a scalable indexing and query engine that can be readily applied to any library of mathematical knowledge. While our focus here is on libraries that are available in a content markup language, QMT naturally extends to presentation and narration markup languages.

Keywords

Function Symbol Query Language Predicate Symbol Relation Symbol Object Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ADL12]
    Aspinall, D., Denney, E., Lüth, C.: Querying Proofs. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 92–106. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. [ANS03]
    ANSI/ISO/IEC. 9075:2003, Database Language SQL (2003)Google Scholar
  3. [AS04]
    Asperti, A., Selmi, M.: Efficient Retrieval of Mathematical Statements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 17–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. [AY08]
    Altamimi, M., Youssef, A.: A Math Query Language with an Expanded Set of Wildcards. Mathematics in Computer Science 2, 305–331 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. [BCC+04]
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report. The Open Math Society (2004), http://www.openmath.org/standard/om20
  6. [BR03]
    Bancerek, G., Rudnicki, P.: Information Retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–132. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [CHK+11]
    Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project Abstract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 289–291. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. [GC03]
    Guidi, F., Sacerdoti Coen, C.: Querying Distributed Digital Libraries of Mathematics. In: Hardin, T., Rioboo, R. (eds.) Proceedings of Calculemus, pp. 17–30 (2003)Google Scholar
  9. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. [Koh06]
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [KRZ10]
    Kohlhase, M., Rabe, F., Zholudev, V.: Towards MKM in the Large: Modular Representation and Scalable Software Architecture. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P., Rideau, L., Rioboo, R., Sexton, A. (eds.) AISC 2010. LNCS, vol. 6167, pp. 370–384. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. [KŞ06]
    Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. [LM06]
    Libbrecht, P., Melis, E.: Methods to Access and Retrieve Mathematical Content in ActiveMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 331–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [MG08]
    Mišutka, J., Galamboš, L.: Extending full text search engine for mathematical content. In: Sojka, P. (ed.) Towards a Digital Mathematics Lbrary, pp. 55–67 (2008)Google Scholar
  15. [MM06]
    Munavalli, R., Miner, R.: MathFind: a math-aware search engine. In: Efthimiadis, E., Dumais, S., Hawking, D., Järvelin, K. (eds.) International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 735. ACM (2006)Google Scholar
  16. [MY03]
    Miller, B., Youssef, A.: Technical Aspects of the Digital Library of Mathematical Functions. Annals of Mathematics and Artificial Intelligence 38(1-3), 121–136 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. [Rab08]
    Rabe, F.: The MMT System (2008), https://trac.kwarc.info/MMT/
  18. [RK11]
    Rabe, F., Kohlhase, M.: A Scalable Module System (2011), http://arxiv.org/abs/1105.0548
  19. [SL11]
    Sojka, P., Líška, M.: Indexing and Searching Mathematics in Digital Libraries - Architecture, Design and Scalability Issues. In: Davenport, J., Farmer, W., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 228–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. [SS98]
    Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. [TB85]
    Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)Google Scholar
  22. [Urb06]
    Urban, J.: MOMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  23. [W3C03]
    W3C. Mathematical Markup Language (MathML) Version 2.0., 2nd edn. (2003), http://www.w3.org/TR/MathML2
  24. [W3C07]
    W3C. XQuery 1.0: An XML Query Language (2007), http://www.w3.org/TR/xquery/
  25. [W3C08]
    W3C. SPARQL Query Language for RDF (2008), http://www.w3.org/TR/rdf-sparql-query/
  26. [ZK09]
    Zholudev, V., Kohlhase, M.: TNTBase: a Versioned Storage for XML. In: Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3, Mulberry Technologies, Inc. (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian Rabe
    • 1
  1. 1.Jacobs University BremenGermany

Personalised recommendations