Optimization in SMT with \({\mathcal LA}\)(ℚ) Cost Functions

  • Roberto Sebastiani
  • Silvia Tomasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality.

In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of \({\mathcal LA}\)(ℚ) cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in AR and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.

Keywords

Mixed Integer Linear Programming Truth Assignment Unit Clause Linear Arithmetic Cost Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint Integer Programming: A New Approach to Integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Audemard, G., Cimatti, A., Korniłowicz, A., Sebastiani, R.: SAT-Based Bounded Model Checking for Timed Systems. In: Proc. FORTE 2002. LNCS, vol. 2529. Springer (2002)Google Scholar
  10. 10.
    Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics 89(1-3), 3–44 (1998)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Biere et al [12], ch. 26, pp. 825–885 (February 2009)Google Scholar
  12. 12.
    In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)Google Scholar
  13. 13.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient Theory Combination via Boolean Search. Information and Computation 204(10) (2006)Google Scholar
  14. 14.
    Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS - A User’s Guide. In: GAMS Development Corporation, Washington, DC, USA (2011)Google Scholar
  15. 15.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Griggio, A.: A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic. Journal on Satisfiability, Boolean Modeling and Computation - JSAT 8, 1–27 (2012)Google Scholar
  18. 18.
  19. 19.
    Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Biere et al. [12], ch.19, pp. 613–631 (February 2009)Google Scholar
  20. 20.
    Lodi, A.: Mixed Integer Programming Computation. In: 50 Years of Integer Programming 1958-2008, pp. 619–645. Springer (2009)Google Scholar
  21. 21.
    Lynce, I., Marques-Silva, J.: On Computing Minimum Unsatisfiable Cores. In: SAT (2004)Google Scholar
  22. 22.
    Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Biere et al [12], ch.4, pp. 131–153 (February 2009)Google Scholar
  23. 23.
    Nelson, C.G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  24. 24.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Raman, R., Grossmann, I.: Modelling and computational techniques for logic based integer programming. Computers and Chemical Engineering 18(7), 563–578 (1994)CrossRefGoogle Scholar
  26. 26.
    Roussel, O., Manquinho, V.: Pseudo-Boolean and Cardinality Constraints. In: Biere et al [12], ch. 22, pp. 695–733 (February 2009)Google Scholar
  27. 27.
    Sawaya, N.W., Grossmann, I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)CrossRefGoogle Scholar
  28. 28.
    Sawaya, N.W., Grossmann, I.E.: A hierarchy of relaxations for linear generalized disjunctive programming. European Journal of Operational Research 216(1), 70–82 (2012)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. Technical Report DISI-12-003, DISI, University of Trento (January 2012), http://disi.unitn.it/~rseba/ijcar12/DISI-12-003.pdf
  30. 30.
    Sellmann, M., Kadioglu, S.: Dichotomic Search Protocols for Constrained Optimization. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 251–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Vecchietti, A.: Personal communication (2011)Google Scholar
  32. 32.
    Vecchietti, A., Grossmann, I.: Computational experience with logmip solving linear and nonlinear disjunctive programming problems. In: Proc. of FOCAPD, pp. 587–590 (2004)Google Scholar
  33. 33.
    Wolfman, S., Weld, D.: The LPSAT Engine & its Application to Resource Planning. In: Proc. IJCAI (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roberto Sebastiani
    • 1
  • Silvia Tomasi
    • 1
  1. 1.DISIUniversity of TrentoItaly

Personalised recommendations