Advertisement

The QMLTP Problem Library for First-Order Modal Logics

  • Thomas Raths
  • Jens Otten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

The Quantified Modal Logic Theorem Proving (QMLTP) library provides a platform for testing and evaluating automated theorem proving (ATP) systems for first-order modal logics. The main purpose of the library is to stimulate the development of new modal ATP systems and to put their comparison onto a firm basis. Version 1.1 of the QMLTP library includes 600 problems represented in a standardized extended TPTP syntax. Status and difficulty rating for all problems were determined by running comprehensive tests with existing modal ATP systems. In the presented version 1.1 of the library the modal logics K, D, T, S4 and S5 with constant, cumulative and varying domains are considered. Furthermore, a small number of problems for multi-modal logic are included as well.

Keywords

Modal Logic Intuitionistic Logic Modal Problem Automate Theorem Prove Problem Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balsiger, P., Heuerding, A., Schwendimann, S.: A Benchmark Method for the Propositional Modal Logics K, KT, S4. Journal of Automated Reasoning 24, 297–317 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Benzmüller, C.E., Paulson, L.C: Quantified Multimodal Logics in Simple Type Theory. Seki Report SR-2009-02, Saarland University (2009) ISSN 1437-4447Google Scholar
  3. 3.
    Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam (2006)Google Scholar
  5. 5.
    Boeva, V., Ekenberg, L.: A Transition Logic for Schemata Conflicts. Data & Knowledge Engineering 51(3), 277–294 (2004)CrossRefGoogle Scholar
  6. 6.
    Brown, C.E.: Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 147–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective First-Order Query Processing in Description Logics. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 274–279 (2007)Google Scholar
  8. 8.
    Fariñas del Cerro, L., Herzig, A., Longin, D., Rifi, O.: Belief Reconstruction in Cooperative Dialogues. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, pp. 254–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Fitting, M.: Types, Tableaus, and Goedel’s God. Kluwer, Amsterdam (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Amsterdam (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Forbes, G.: Modern Logic. A Text in Elementary Symbolic Logic. OUP, Oxford (1994)zbMATHGoogle Scholar
  12. 12.
    Girle, R.: Modal Logics and Philosophy. Acumen Publ. (2000)Google Scholar
  13. 13.
    Gödel, K.: An Interpretation of the Intuitionistic Sentential Logic. In: Hintikka, J. (ed.) The Philosophy of Mathematics, pp. 128–129. Oxford University Press, Oxford (1969)Google Scholar
  14. 14.
    Massacci, F., Donini, F.M.: Design and Results of TANCS-2000 Non-classical (Modal) Systems Comparison. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 50–56. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Otten, J.: Implementing Connection Calculi for First-order Modal Logics. In: 9th International Workshop on the Implementation of Logics (IWIL 2012), Merida, Venezuela (2012)Google Scholar
  16. 16.
    Patel-Schneider, P.F., Sebastiani, R.: A New General Method to Generate Random Modal Formulae for Testing Decision Procedures. Journal of Articial Intelligence Research 18, 351–389 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Popcorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  18. 18.
    Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic. Journal of Automated Reasoning 38(1-3), 261–271 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Reiter, R.: What Should a Database Know? Journal of Logic Programming 14(1-2), 127–153 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sider, T.: Logic for Philosophy. Oxford University Press, Oxford (2009)Google Scholar
  21. 21.
    Stone, M.: Abductive Planning With Sensing. In: AAAI 1998, Menlo Park, CA, pp. 631–636 (1998)Google Scholar
  22. 22.
    Stone, M.: Towards a Computational Account of Knowledge, Action and Inference in Instructions. Journal of Language and Computation 1, 231–246 (2000)Google Scholar
  23. 23.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Sutcliffe, G.: The 5th IJCAR automated theorem proving system competition – CASC-J5. AI Communications 24(1), 75–89 (2011)MathSciNetGoogle Scholar
  25. 25.
    Thion, V., Cerrito, S., Cialdea Mayer, M.: A General Theorem Prover for Quantified Modal Logics. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 266–280. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Raths
    • 1
  • Jens Otten
    • 1
  1. 1.Institut für InformatikUniversity of PotsdamPotsdam-BabelsbergGermany

Personalised recommendations