BDD-Based Automated Reasoning for Propositional Bi-Intuitionistic Tense Logics

  • Rajeev Goré
  • Jimmy Thomson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)


We give Binary Decision Diagram (BDD) based methods for deciding validity and satisfiability of propositional Intuitionistic Logic  Int and Bi-intuitionistic Tense Logic BiKt. We handle intuitionistic implication and bi-intuitionistic exclusion by treating them as modalities, but the move to an intuitionistic basis requires careful analysis for handling the reflexivity, transitivity and antisymmetry of the underlying Kripke relation. BiKt requires a further extension to handle the interactions between the intuitionistic and modal binary relations, and their converses. We explain our methodology for using the Kripke semantics of these logics to constrain the underlying least and greatest fixpoint approaches of the finite model construction. With some optimisations this technique is competitive with the state of the art theorem provers for Intuitionistic Logic using the ILTP benchmark and randomly generated formulae.


Modal Logic Binary Relation Theorem Prover Inverse Method Intuitionistic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avellone, A., Fiorino, G., Moscato, U.: Optimization techniques for propositional intuitionistic logic and their implementation. Theoretical Computer Science 409(1), 41–58 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  3. 3.
  4. 4.
    Buisman, L., Goré, R.: A Cut-Free Sequent Calculus for Bi-intuitionistic Logic. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 90–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Goré, R., Thomson, J., Widmann, F.: An experimental comparison of theorem provers for CTL. In: TIME 2011: Eighteenth International Symposium on Temporal Representation and Reasoning, pp. 49–56 (September 2011)Google Scholar
  6. 6.
    Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: AiML 2008, pp. 43–66 (2008)Google Scholar
  7. 7.
    Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for bi-intuitionistic tense logic. In: Advances in Modal Logic, pp. 156–177 (2010)Google Scholar
  8. 8.
    Goré, R., Widmann, F.: Sound Global State Caching for ALC with Inverse Roles. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Marrero, W.: Using BDDs to Decide CTL. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 222–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    McLaughlin, S., Pfenning, F.: The focused constraint inverse method for intuitionistic modal logics (2010), (unpublished manuscript) (accessed January 31, 2012)Google Scholar
  11. 11.
    McLaughlin, S., Pfenning, F.: Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K. Journal of Applied Non-classical Logics 49 (2005)Google Scholar
  13. 13.
    Pinto, L., Uustalu, T.: Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 295–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Postniece, L.: Deep Inference in Bi-intuitionistic Logic. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 320–334. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Postniece, L.: Proof Theory and Proof Search of Bi-Intuitionistic and Tense Logic. Ph.D. thesis, Australian National University (2011)Google Scholar
  16. 16.
    Raths, T., Otten, J.: The ILTP library (2007), (accessed January 2012)
  17. 17.
    Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic, release v1.1. Journal of Automated Reasoning (2006)Google Scholar
  18. 18.
    Rauszer, C.: Applications of Kripke models to Heyting-Brouwer logic. Studia Logica 36, 61–71 (1977)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rajeev Goré
    • 1
  • Jimmy Thomson
    • 1
  1. 1.Logic and Computation Group, Research School of Computer ScienceThe Australian National UniversityAustralia

Personalised recommendations