Taming Past LTL and Flat Counter Systems

  • Stéphane Demri
  • Amit Kumar Dhar
  • Arnaud Sangnier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

Reachability and LTL model-checking problems for flat counter systems are known to be decidable but whereas the reachability problem can be shown in NP, the best known complexity upper bound for the latter problem is made of a tower of several exponentials. Herein, we show that the problem is only NP-complete even if LTL admits pasttime operators and arithmetical constraints on counters. Actually, the NP upper bound is shown by adequately combining a new stuttering theorem for Past LTL and the property of small integer solutions for quantifier-free Presburger formulae. Other complexity results are proved, for instance for restricted classes of flat counter systems.

Keywords

Temporal Logic Counter System Propositional Variable Kripke Structure Path Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1998)Google Scholar
  2. 2.
    Borosh, I., Treybig, L.: Bounds on positive integral solutions of linear Diophantine equations. American Mathematical Society 55, 299–304 (1976)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bozga, M., Iosif, R., Konečný, F.: Fast Acceleration of Ultimately Periodic Relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Comon, H., Cortier, V.: Flatness Is Not a Weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Comon, H., Jurski, Y.: Multiple Counter Automata, Safety Analysis and PA. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Demri, S., Dhar, A., Sangnier, A.: Taming past LTL and flat counter systems. Technical report (2012), ArXivGoogle Scholar
  7. 7.
    Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking \(\textsf{CTL}^{*}\) over flat Presburger counter systems. JANCL 20(4), 313–344 (2010)Google Scholar
  8. 8.
    Dixon, C., Fisher, M., Konev, B.: Temporal Logic with Capacity Constraints. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 163–177. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999, pp. 352–359 (1999)Google Scholar
  10. 10.
    Etessami, K., Wilke, T.: An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic. I&C 160(1–2), 88–108 (2000)MathSciNetMATHGoogle Scholar
  11. 11.
    Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications to Broadcast Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Finkel, A., Lozes, É., Sangnier, A.: Towards Model-Checking Programs with Lists. In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007. LNCS (LNAI), vol. 5489, pp. 56–86. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Gabbay, D.: The Declarative Past and Imperative Future. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 409–448. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  14. 14.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in Succinct and Parametric One-Counter Automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kuhtz, L.: Model Checking Finite Paths and Trees. PhD thesis, Universität des Saarlandes (2010)Google Scholar
  16. 16.
    Kuhtz, L., Finkbeiner, B.: Weak Kripke Structures and LTL. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica 41(7–8), 415–434 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS 2002, pp. 383–392. IEEE (2002)Google Scholar
  19. 19.
    Laroussinie, F., Schnoebelen, P.: Specification in CTL + past for verification in CTL. I&C 156, 236–263 (2000)MathSciNetMATHGoogle Scholar
  20. 20.
    Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lutz, C.: NE\({\textsc{xp}}\)T\({\textsc{ime}}\)-Complete Description Logics with Concrete Domains. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 45–60. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall (1967)Google Scholar
  23. 23.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. IPL 63, 243–246 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. TCS 6(2), 223–231 (1978)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stéphane Demri
    • 1
  • Amit Kumar Dhar
    • 2
  • Arnaud Sangnier
    • 2
  1. 1.LSV, CNRS, ENS Cachan, INRIAFrance
  2. 2.LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRSFrance

Personalised recommendations