Advertisement

Soils: Retention and Movement of Elements at the Interface

  • Andreas Bauer
  • Bruce D. Velde
Chapter

Abstract

Soils are developed at the surface zone where atmosphere and rock materials which have interacted in the first instances of alteration, specifically with rain water that is basically very unsaturated with respect to mineral elements are influenced by chemical forces engendered by plant activity. At the interface water moves into the alterite and eventually it moves outward (down hill by gravity) to the water table and into the surface flow of streams and rivers. This movement of water from land surfaces to streams and rivers brings with it the dissolved and some fine grained material (clays) into the system of material displacement which is called erosion. Erosion does not necessarily mean displacement by mass movement of solids. Dissolved material makes up a significant amount of displacement of material in the geological cycle. The most important aspect of the contact zone is that it is for the most part covered, or at least partially, by plants which form a zone of roots which interact with the alterite material.

Keywords

Clay Mineral Forest Soil Clay Content Minor Element Temperate Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aiken W (2002) Global patterns: climate, vegetation and soils. University of Oklahoma Press, Norman, OK, 435 ppGoogle Scholar
  2. Amato M, Migliozi A, Mazzoleni S (2004) Il sistema suolo vegetazione. Liguori Editore, Napoli, 350 ppGoogle Scholar
  3. Arai Y (2010) Ch 16 Arsenic and antimony. In: Hooda P (ed) Trace elements in soils. Wiley, Chichester, UK, pp 396–435, 596 ppGoogle Scholar
  4. Arnfalk P, Wasay S, Tokunaga S (1996) A comparative study of Cd, Cr(III), Cr(IV) Hg and Pb uptake by minerals and soil materials. Water Air Soil Pollut 87:131–148CrossRefGoogle Scholar
  5. Aubert H, Pinta M (1977) Trace elements in soils. Elsevier, Amsterdam, 395 ppGoogle Scholar
  6. Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406CrossRefGoogle Scholar
  7. Barkoudah Y, Henderson J (2006) Plant ashes from Syria and the manufacture of ancient glass: ethnographic and scientific aspects. J Glass Stud 48:297–321Google Scholar
  8. Black C (1957) Soil-plant relationships. Wiley, New York, 792 ppGoogle Scholar
  9. Boeglin J-L, Mazaltarim D (1989) Géochimie, degrés d’évolution et lithodépendance des cuirasses ferrugineuses de la région de Gaoua au Birkina Faso. Sci Géol 42:27–44Google Scholar
  10. Borrman B, Wang D, Bormann F, Benoit G, April R, Snyder M (1998) Rapid plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155CrossRefGoogle Scholar
  11. Broadley M, Bowen H, Cotterill H, Hammond J, Meacham M, Mead A, White P (2004) Phylogenic variation in the shoot mineral concentration of angiosperms. J Exp Bot 56:321–336CrossRefGoogle Scholar
  12. Bryant J, Dixon J (1964) Clay mineralogy and weathering of a red-yellow podzolic soil from quartz mica schist in the Alabama piedmont. In: Ingerson E (ed) Clays and clay minerals, Monograph 19. Pergamon, New York, pp 509–521, 691 ppGoogle Scholar
  13. Buckman H, Brady N (1969) The nature and properties of soils. Macmillan, New York, 651 ppGoogle Scholar
  14. Chesworth W, Dejou J, Larroque P (1981) The weathering of basalt and relative mobility’s of major elements at Belbex, France. Geochim Cosmochim Acta 45:1235–1241CrossRefGoogle Scholar
  15. Cornelis J-Y, Ranger J, Eserentant I, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97:231–245CrossRefGoogle Scholar
  16. Daux V, Vtobidirt J, Hemond C, Petit J-C (1994) Geochemical evolution of basaltic rocks subjected to weathering: fate of the major elements, rare earth elements and thorium. Geochim Cosmochim Acta 58:4941–4954CrossRefGoogle Scholar
  17. Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swill alpine environments. Catena 45:19–47CrossRefGoogle Scholar
  18. Evans L, Barabash S, Lumsdon D, Gu X (2010) Application of chemical speciation modelling to studies on toxic element behaviour in soils. In: Hooda P (ed) Trace elements in soils. Wiley, Chichester, UK, pp 210–214, 596 ppGoogle Scholar
  19. Feng J-L (2010) Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots and the surrounding terra rosa over dolomite during chemical weathering. Chem Geol 271:112–132CrossRefGoogle Scholar
  20. Foth D (1990) Fundamentals of clay science. Wiley, New York, 360 ppGoogle Scholar
  21. Funare L, Vailonis A, Strawn D (2005) Polarized XANES and EXAFS spectroscopic investigation into copper (II) complexes on vermiculite. Geochim Cosmochim Acta 69:5219–5231CrossRefGoogle Scholar
  22. Fuss C, Driscoll C, Johnson C, Petras R, Fahey T (2011) Dynamics of oxidized and reduced iron in a northern hardwood forest. Biogeochemistry 104:103–119CrossRefGoogle Scholar
  23. Gaillardet J, Viers D, Dupré C (2004) Trace elements in river waters. In: Holland H, Turkian K (eds) Treatise on geochemistry, vol 5. Elsevier, Oxford, pp 225–260, Ch 509Google Scholar
  24. Hayes M, MacCarthy P, Malcom R, Swift R (eds) (1989) Humic substances II. Wiley, Chichester, UK, 765 ppGoogle Scholar
  25. He Y, Li D, Velde B, Yang Y, Huang C, Gong Z, Zhang G (2008) Clay minerals in a soil chronosequence derived from basalt on Hainan Island China. Geoderma 148:206–212CrossRefGoogle Scholar
  26. Hodson M, White P, Mead A, Broadley M (2005) Phylogenic variation in silicon compositions of plants. Ann Bot 96:1027–1046CrossRefGoogle Scholar
  27. Holmgren G, Meyer M, Chaney R, Daniels R (1993) Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J Environ Qual 22:335–348CrossRefGoogle Scholar
  28. Hooda P (ed) (2010) Trace elements in soils. Wiley, Chichester, UK, 596 ppGoogle Scholar
  29. Huang P, Gobran G (eds) (2005) Biogeochemistry of trace elements in the rizosphere. Elsevier, Amsterdam, 465 ppGoogle Scholar
  30. Huang C, Gong Z, He Y (2004) Elemental geochemistry of a soil chronosequence on basalt on northern Hainan Island, China. Chin J Geochem 23:245–254CrossRefGoogle Scholar
  31. Huang J-H, Iilgen G, Matner E (2011) Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany. Biogeochemistry 103:59–70CrossRefGoogle Scholar
  32. Isaure M-P, Manceau A, Geoffroy N, Laourdigue A, Tamura N, Marcus M (2005) Zinc mobility and speciation in soil covered in contaminated dredged sediment using micrometer-scale and bulk average X-ray fluorescence absorption and diffraction techniques. Geochem Cosmochim Acta 69:1173–1198CrossRefGoogle Scholar
  33. Isaure M-P, Sarret G, Harada E, Choi Y-E, Marcus M, Faraka S, Geoffry N, Pairis S, Susini J, Clements S, Manceau A (2010) Calcium promotes elimination as vaterite grains by tobacco trichomes. Geochim Cosmochim Acta 74:5817–5834CrossRefGoogle Scholar
  34. Jahan N, Guan H, Bestland E (2011) Arsenic remediation by Australian laterites. Environ Earth Sci 64:247–253CrossRefGoogle Scholar
  35. Jenny H (1994) Factors of soil formation. Dover, New York, 281 ppGoogle Scholar
  36. Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389CrossRefGoogle Scholar
  37. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC, Boca Raton, FL, 364 ppGoogle Scholar
  38. Khan M, Zaide A, Goel R, Musarrat J (eds) (2011) Biomanagement of metal-contaminated soils, vol 20, Environmental pollution. Springer, Dordrecht, 512 ppGoogle Scholar
  39. Kirpichikova T, Manceau A, Lanson B, Marcus M, Jacquet T (2003) Speciation and mobility of Zn, Cu and Pb in truck farming soil contaminated by sewage irrigation. J Phys Chem 107:695–698CrossRefGoogle Scholar
  40. Knecht M, Goransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–469CrossRefGoogle Scholar
  41. Koren R, Mezuman V (1981) Boron absorption by clay minerals using a phenomenological equation. Clay Clay Miner 29:198–204CrossRefGoogle Scholar
  42. Lanson B, Drits V, Gaillot A-C, Silvester E, Plançon A, Manceau A (2002) Structure of heavy-metal sorbed birnessite: Part I results from X-ray diffraction. Am Miner 87:1631–1645, 69:1173–1198Google Scholar
  43. Lanson B, Marcus M, Farka S, Pafili F, Geoffroy N, Manceau A (2008) Formation of Zn-Ca phyllomanganate nanoparticles in grass roots. Geochim Cosmochim Acta 72:2478–2490CrossRefGoogle Scholar
  44. Lemarchand E, Schott J, Gaillardet J (2005) Boron isotopic fractionation related to boron absorption on humic acid and the structure of surface complexes formed. Geochim Cosmochim Acta 69:3519–3533CrossRefGoogle Scholar
  45. Lemarchand E, Schott J, Gaillardet J (2007) How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxide experiments. Earth Planet Sci Lett 260:277–296CrossRefGoogle Scholar
  46. Liu Y, Laird D, Barak P (1997) Release and fixation of ammonium and potassium under long-term fertility management. Soil Soc Am J 61:310–314CrossRefGoogle Scholar
  47. Loughnan F (1969) Chemical weathering of the silicate minerals. Elsevier, New York, 154 ppGoogle Scholar
  48. Manceau A, Marcus M, Tamura N, Proux O, Geoffroy N, Lanson B (2004) Natural speciation of Zn at the micrometer scale in clayey soil using X-ray fluorescence adsorption and diffraction. Geochim Cosmochim Acta 68:2467–2483CrossRefGoogle Scholar
  49. Manceau A, Tommasso C, Rims S, Geoffroy N, Chataigner D, Schlegel M, Tisserand D, Marcus M, Tamura N, Chen Z (2005) Natural speciation of Mn, Ni, Zn at eh micrometer scale in a clayey paddy using X-ray fluorescence, absorption and diffraction. Geochim Cosmochim Acta 69:4007–4014CrossRefGoogle Scholar
  50. Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772CrossRefGoogle Scholar
  51. Mareschal L, Bonnaud P, Turpault M-P, Ranger J (2010) Impact of common European tree species on the chemical and physiochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23CrossRefGoogle Scholar
  52. Markert B (1998) Instrumental multi-element analysis in plant material: a modern method in environmental chemistry and tropical system research. In: Wasserman J, Silvia-Filho E, VillasBoos R (eds) Environmental geochemistry in the tropics. Springer, Berlin, pp 75–95, 305 ppCrossRefGoogle Scholar
  53. Martin C, McCulloch M (1999) Nd/Sr isotopic and trace geochemistry of rive sediments and soils in fertilized catchment, New South Wales, Australia. Geochim Cosmochim Acta 63:287–305CrossRefGoogle Scholar
  54. Matocha C, Grove J, Karathanasis A (2010) Nitrogen fertilizer effects on soil mineralogy in an agrosystem. In: Abstracts annual ASA, CSSA, SSSA meeting, number 509Google Scholar
  55. Meijer E, Burrman P (2003) Chemical trends in a perhumid soil catena on the Turrialba volcano (Costa Rico). Geoderma 117:185–201CrossRefGoogle Scholar
  56. Melegy A, Slaninka I, Paces T (2011) Weathering fluxes of arsenic from small catchment in Slovak Republic. Environ Earth Sci 6:549–555CrossRefGoogle Scholar
  57. Morel J-L, Mench M, Guckert A (1987) Dynamique des métaux lourds dans la rhizosphere: rôle des exudats racinaires. Rev Ecol Biol Sol 24:485–492Google Scholar
  58. Oh N, Richter D (2005) Elemental translocation and loss from three highly weathered bed-rock profiles in the southeastern United States. Geoderma 126:5–25CrossRefGoogle Scholar
  59. Pedro G (1966) Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielle. C R Acad Sci D 262:1828–1831Google Scholar
  60. Peretyazhko T, Sposito G (2005) Iron (III) reduction and phosphorous solubilisation in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652CrossRefGoogle Scholar
  61. Piccolo A (ed) (1996) Humic substances in terrestrial ecosystems II. Elsevier, Amsterdam, 675 ppGoogle Scholar
  62. Pierce F, Dowdy R, Grigal D (1982) Concentrations of six trace metals in some major Minnesota soil series. J Environ Qual 11:416–422CrossRefGoogle Scholar
  63. Righi D, Cauvel A (1987) Podzols and podzolisation. AFES and INRA Publication, Paris, 227 ppGoogle Scholar
  64. Righi D, Reisänän M, Gillot F (1997) Clay mineral transformations in podzolised tills in central Finland. Clay Miner 32:531–544CrossRefGoogle Scholar
  65. Ross S (1994) Retention, transformation and mobility of toxic metal in soils. In: Ross S (ed) Toxic metals in soil–plant systems. Wiley, Chichester, UK, pp 94–210, 466 ppGoogle Scholar
  66. Ruhe R (1984) Soil-climate systems across the prairies in Midwestern USA. Geoderma 54:201–219CrossRefGoogle Scholar
  67. Schultz M, Vivit D, Schultz C, Fitzpatrick J, White A (2010) Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California. Soil Sci Soc Am J 74:550–564CrossRefGoogle Scholar
  68. Serret G, Isaure M-P, Marcus M, Harada E, Choi Y-E, Pairis S, Fakhara S, Manceau A (2007) Chemical forms of calcium in Ca, Zn and Ca, Cd containing grains excreted by tobacco trichomes. Can J Chem 88:738–746CrossRefGoogle Scholar
  69. Shaheen S (2009) Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma 153:61–68CrossRefGoogle Scholar
  70. Siffermann G (1973) Les sols de quelques régions volcaniques du Cameroun. Mémoires ORSTOM, no 66, 182 ppGoogle Scholar
  71. Sposito G (1989) The chemistry of soils. Oxford University Press, New York, 277 ppGoogle Scholar
  72. Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257–269CrossRefGoogle Scholar
  73. Teutsch N, Erel Y, Halicz L, Chadwick OA (1999) The influence of rainfall on metal concentration and behavior in the soil—evidence from 210Pb and stable Pb isotopes. Geochim Cosmochim Acta 63(21):3499–3511(13)Google Scholar
  74. Velde B (2006) Preliminary study of heavy metal chemistry of shore and slikke clay deposits in the Brouage region: concentration of Cd, Sn and As as related to P. Cahiers Biol Mar 47:93–102Google Scholar
  75. Velde B, Barré P (2010) Soils, plants and clay minerals. Springer, Berlin, 344 ppCrossRefGoogle Scholar
  76. Walker L, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge, 456 ppCrossRefGoogle Scholar
  77. Wedephol H (1969) Handbook of geochemistry, vol I. Springer, New YorkCrossRefGoogle Scholar
  78. White A, Blum A, Schultz M, Vivit D, Stonestrum D, Larsen M, Murphy S, Eberl D (1998) Chemical weathering in a tropical watershed, Luquillo Mountains Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim Cosmochim Acta 62:209–236CrossRefGoogle Scholar
  79. White A, Schultz M, Vivit D, Blum A, Stonestrom A, Anderson S (2008) Geochemical weathering of a marine chronosequence, Santa Cruz California: interpreting rates and controls based upon soil concentration depth profiles. Geochim Cosmochim Acta 72:36–68CrossRefGoogle Scholar
  80. Williams L, Herwig R (2002) Exploring intra-crystalline B-isotope variations in mixed layer illite-smectiteGoogle Scholar
  81. Zahrn D, Johnson A (1995) Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci Soc Am J 59:1444–1452CrossRefGoogle Scholar
  82. Tang J, Johanesson K (2005) Absorption of rare earth elements onto Carrizo sand: experimental investigations and modelling with surface complexation. Geochim Cosmochim Acta 69:5247–5261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andreas Bauer
    • 1
  • Bruce D. Velde
    • 2
  1. 1.Institut für Nukleare Entsorgung (INE)Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Ecole Normale Supérieure Laboratoire de GéologieParis CEDEX 5France

Personalised recommendations