High-\(T_c\) (YBCO) dc SQUID sensors were developed and employed in magnetic immunoassays, magnetoencephalography and ultra-low field nuclear magnetic resonance. The noise of the sensors is an important factor since it affects the SNR of any measurement. This leads to e.g. faster MNP measurements (for immunoassays), better localization of MEG sources, and higher resolution in ULF-MRI.


Sentinel Lymph Node Squid Magnetometer Flux Noise Squid Sensor Flux Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Eberbeck, C. Bergemann, S. Hartwig, U. Steinhoff, L. Trahms, Quantification of specific bindings of biomolecules by magnetorelaxometry. J. Nanobiotechnol. 6(4), 13 (2008)Google Scholar
  2. 2.
    H.L. Grossman, W.R. Myers, V.J. Vreeland, R. Bruehl, M.D. Alper, C.R. Bertozzi, J. Clarke, Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA 101(1), 129–134 (2004)CrossRefGoogle Scholar
  3. 3.
    K. Enpuku, A. Ohba, K. Inoue, T.Q. Yang, Application of HTS SQUIDs to biological immunoassays. Phys. C 412–414, 1473–1479 (2004)CrossRefGoogle Scholar
  4. 4.
    C. Yang, S. Yang, J. Chieh, H. Horng, C. Hong, H. Yang, K.H. Chen, B.Y. Shih, T. Chen, M. Chiu, Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem. Neurosci. 2, 500–505 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Strömberg, J. Göransson, K. Gunnarsson, M. Nilsson, P. Svedlindh, M. Strømme, Sensitive molecular diagnastics using volume-amplified magnetic nanobeads. Nanoletters 8(3), 816–821 (2008)Google Scholar
  6. 6.
  7. 7.
    S.Y. Yang, J.J. Chieh, W.C. Wang, C.Y. Yu, C.B. Lan, J.H. Chen, H.E. Horng, C.-Y. Hong, H.C. Yang, W. Huang, Ultra-highly sensitive and wash-free bio-detection of H5N1 virus by immunomagnetic reduction assays. J. Virol. Methods 153, 250–252 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Tanaka, A. Hirata, Y. Saito, T. Mizoguchi, Y. Tamaki, I. Sakita, M. Monden, Application of high Tc SQUID magnetometer for sentinel-lymph node biopsy. IEEE Trans. Appl. Supercond. 11, 665–668 (2001)CrossRefGoogle Scholar
  9. 9.
    U.A. Gunasekera, Q.A. Pankhurst, M. Douek, Imaging applications of nanotechnology in cancer. Targ. Oncol. 4, 169–181 (2009)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    P.K. Kemppainen, R.J. Ilmoniemi, Channel capacity of multichannel magnetometers, in S.J. Williamson et al. (eds.) Advances in Biomagnetism (Plenum Press, New York, 1989), pp. 635–638.Google Scholar
  12. 12.
    J. Clarke, M. Hatridge, M. Möble, SQUID-detected magnetic resonance imaging in microtesla fields. Annu. Rev. Biomed. Eng. 9, 389–413 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Dong, Y. Zhang, H. Krause, X. Xie, A. Offenhäusser, Low field MRI detection with tuned HTS SQUID magnetometer. IEEE Trans. Appl. Supercond. 21, 509–513 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Liao, K. Huang, H. Yang, C. Yen, M.J. Chen, H. Chen, H. Horng, S.Y. Yang, Characterization of tumors using high-\(t_c\) superconducting quantum interference device detected nuclear magnetic resonance and imaging. Appl. Phys. Lett. 97, 263701 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Schlenga, R. McDermott, J. Clarke, R.E. de Souza, A. Wong-Foy, A. Pines, Low-field magnetic resonance imaging with a high-\(T_c\) dc superconducting quantum interference device. Appl. Phys. Lett. 75, 3695–3697 (1999)CrossRefGoogle Scholar
  16. 16.
    O. Snigirev, M. Hayashi, S. Fukumoto, Y. Hatsukade, Y. Katsu, S. Tanaka, Development of ultra low field nuclear magnetic resonance imaging system using HTS rf SQUID. J. Supercond. Nov. Magn. 24, 1033–1036 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Qui, Y. Zhang, H.-J. Krause, A. Braginski, M. Burghoff, L. Trahms, Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device. Appl. Phys. Lett. 91, 072505 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Zevenhoven, Solving Transient Problems in Ultra-Low-Field MRI (Aalto University, Master’s Thesis, 2011)Google Scholar
  19. 19.
    J.O. Nieminen, P.T. Vesanen, K.C.J. Zevenhoven, J. Dabek, J. Hassel, J. Luomahaara, J.S. Penttilä, R.J. Ilmoniemi, Avoiding eddy-current problems in ultra-low-field mri with self-shielded polarizing coils. J. Mag. Res. 212, 154–160 (2011)Google Scholar
  20. 20.
    N. Khare, P. Chaudhari, Operation of bicrystal junction high-\(T_c\) direct current-SQUID in a portable microcooler. Appl. Phys. Lett. 65, 2353–2355 (1994)CrossRefGoogle Scholar
  21. 21.
    P.P.P.M. Lerou, H.J.M. ter Brake, J.F. Burger, H.J. Holland, H. Rogalla, Characterization of micromachined cryogenic coolers. J. Micromech. Microeng. 17, 1956–1960 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fredrik Öisjöen
    • 1
  1. 1.Department of Microtechnology and Nanoscience–MC2Chalmers University of TechnologyGothenburgSweden

Personalised recommendations