The superconducting quantum interference device (SQUID) is one of the most sensitive detectors available for measurements of magnetic fields. Due to its unrivaled sensitivity, it has been employed in a variety of applications. One of the most successful application of SQUIDs is for measurements of the tiny magnetic fields produced by the firing neurons in a human brain. This application is known as magnetoencephalography (MEG) and is one of the topics of this thesis. In a state-of-the-art MEG system, a helmet shaped dewar incorporates several hundred SQUID sensors. Before the invention of the SQUID, the existence of magnetic fields produced by neural currents was proven by David Cohen in 1968 by using Faraday type detection with induction coils.


Squid Magnetometer Superconducting Quantum Interference Device Squid Sensor Squid System Magnetic Field Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Cohen, Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161, 784–786 (1968)CrossRefGoogle Scholar
  2. 2.
    D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)CrossRefGoogle Scholar
  3. 3.
    T. Roberts, P. Ferrari, D. Perry, H. Rowley, M. Berger, Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol. 17, 57–64 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Ray, S. Bowyer, Clinical applications of magnetoencephalography in epilepsy. Ann. Indian Acad. Neurol. 13, 14–22 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Stefan, C. Hummel, G. Scheler, A. Genow, K. Druschky, C. Tilz, M. Kaltenhäuser, R. Hopfengärtner, M. Buchfelder, J. Romstöck, Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126(11), 2396–2405 (2003)CrossRefGoogle Scholar
  6. 6.
    P.C. Hansen, M.L. Kringelbach, R. Salmelin (eds.), MEG: An Introduction to Methods (Oxford University Press, New York, 2010)Google Scholar
  7. 7.
    R. Kötitz, H. Matz, L. Trahms, H. Koch, SQUID based remanence measurements for immunoassays. IEEE Trans. Appl. Supercond. 7(2), 3678–3681 (1997)CrossRefGoogle Scholar
  8. 8.
    C. Yang, S. Yang, J. Chieh, H. Horng, C. Hong, H. Yang, K.H. Chen, B.Y. Shih, T. Chen, M. Chiu, Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem. Neurosci. 2, 500–505 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Enpuku, T. Minotani, M. Hotta, A. Nakahodo, Application of high \(T_c\) SQUID magnetometer to biological immunoassays. IEEE Trans. Appl. Supercond. 11(1), 661–664 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Strömberg, J. Göransson, K. Gunnarsson, M. Nilsson, P. Svedlindh, M. Strømme, Sensitive molecular diagnastics using volume-amplified magnetic nanobeads. Nanoletters 8(3), 816–821 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Eberbeck, C. Bergemann, S. Hartwig, U. Steinhoff, L. Trahms, Quantification of specific bindings of biomolecules by magnetorelaxometry. J. Nanobiotechnol. 6(4), 13 (2008)Google Scholar
  12. 12.
    J. Clarke, M. Hatridge, M. Möble, SQUID-detected magnetic resonance imaging in microtesla fields. Annu. Rev. Biomed. Eng. 9, 389–413 (2007)CrossRefGoogle Scholar
  13. 13.
    V.S. Zotev, A.N. Matlachov, P.L. Volegov, A.V. Urbaitis, M.A. Espy, R.H. Kraus, SQUID-based instrumentation for ultralow-field MRI. Supercond. Sci. Technol. 20, 367–373 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Burghoff, H.H. Albrecht, S. Hartwig, I. Hilschenz, R. Körber, T.S. Thömmes, H.J. Scheer, J. Voigt, L. Trahms, SQUID system for MEG and low field magnetic resonance imaging. Metrol. Meas. Syst. 16, 371–375 (2009)Google Scholar
  15. 15.
    P.E. Magnelind, J.J. Gomez, A.N. Matlashov, T. Owens, J.H. Sandin, P.L., Volegov, M.A. Espy, Co-registration of interleaved meg and ulf mri using a 7 channel low-\(T_c\) system. IEEE. Trans. Appl. Supercond. 21, 456–460 (2011)CrossRefGoogle Scholar
  16. 16.
    S.E. Busch, Ultra-Low Field MRI of Prostate Cancer Using SQUID Detection. Ph.D. Thesis, University of California at Berkeley, 2011.Google Scholar
  17. 17.
    H. Koch, SQUID magnetocardiography: status and perspectives. IEEE. Trans. Appl. Supercond. 11, 49–59 (2001)CrossRefGoogle Scholar
  18. 18.
    J.R. Kirtley, M.B. Ketchen, K.G. Stawiasz, J.Z. Sun, W.J. Gallagher, S.H. Blanton, S.J. Wind, High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66(9), 1138–1140 (1995)CrossRefGoogle Scholar
  19. 19.
    H.-J. Krause, M. Kreutzbruck, Recent developments in SQUID NDE. Phys. C. 368, 70–79 (2002)CrossRefGoogle Scholar
  20. 20.
    C.P. Foley, K.E. Leslie, R. Binks, C. Lewis, W. Murray, G.J. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, A. Katzaros, K.H. Muller, E.E. Mitchell, J. Pollack, J. Lee, D.L. Dart, R.R. Barrow, M. Asten, A. Maddever, G. Panjkovis, M. Downey, C. Hoffman, R. Turner, Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications. IEEE. Trans. Appl. Supercond. 9, 3786–3792 (1999)CrossRefGoogle Scholar
  21. 21.
    R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Superconducting quantum interference devices: state of the art and applications. Proc. IEEE. 92(10), 1534–1548 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Clarke, A.I. Braginski, The SQUID Handbook, vol. 1 (WILEY-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  23. 23.
    J. Clarke, A.I. Braginski, The SQUID Handbook, vol. 2 (WILEY-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  24. 24.
    J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89(13), 130801 (2002)CrossRefGoogle Scholar
  25. 25.
    H. Xia, B.-A. Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89(21), 104–211 (2006)CrossRefGoogle Scholar
  26. 26.
    I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)Google Scholar
  27. 27.
    M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304, 1648–1650 (2004)CrossRefGoogle Scholar
  28. 28.
    N. Sergeeva-Chollet, H. Dyvorne, J. Dabek, Q. Herreros, H. Polovy, G. Le Goff, G. Cannies, M. Pannetier-Lecoeur, C. Fermon, Low field MRI with magnetoresistive mixed sensor. J. Phys. Conf. Ser. 303(1), 012055 (2011)CrossRefGoogle Scholar
  29. 29.
    D. Drung, S. Bechstein, K.P. Franke, M. Scheiner, T. Schurig, Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning. IEEE. Trans. Appl. Supercond. 11(1), 880–883 (2001)CrossRefGoogle Scholar
  30. 30.
    D. Drung, C. Aßmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, T. Schurig, Highly sensitive and easy-to-use SQUID sensors. IEEE. Trans. Appl. Supercond. 17(2), 699–704 (2007)CrossRefGoogle Scholar
  31. 31.
    M.I. Faley, U. Poppe, K. Urban, D.N. Paulson, R.L. Fagaly, A new generation of the HTS multilayer dc-SQUID magnetometers and gradiometers. J. Phys. Conf. Ser. 43, 1199–1202 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Khare, P. Chaudhari, Operation of bicrystal junction high-\(T_c\) direct current-SQUID in a portable microcooler. Appl. Phys. Lett. 65, 2353–2355 (1994)CrossRefGoogle Scholar
  33. 33.
    P.P.P.M. Lerou, H.J.M. ter Brake, J.F. Burger, H.J. Holland, H. Rogalla, Characterization of micromachined cryogenic coolers. J. Micromech. Microeng. 17, 1956–1960 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fredrik Öisjöen
    • 1
  1. 1.Department of Microtechnology and Nanoscience–MC2Chalmers University of TechnologyGothenburgSweden

Personalised recommendations