Advertisement

Mobile Manipulators Motion Planning Based on Trajectory Tracking Control

  • Razvan Solea
  • Daniela Cristina Cernega
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

In order for collaborative manipulators systems to perform their tasks, they have to move an object together. The control purpose for such coordinated systems is to ensure the movement of the mobile platforms and manipulators from an initial position to a desired position. The approach presented in this paper focuses on solving the motion planning problem for only one mobile platform equipped with a manipulator. In order to ensure the smooth movement of the considered system the nonlinear sliding mode control was used to solve the motion planning problem. The paper presents the controller design for the trajectory-tracking problem using the sliding mode control for a mobile platform equipped with a manipulator.

Keywords

Mobile manipulators Nonlinear control Kinematics Trajectory tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seraji, H.: An on-line approach to coordinated mobility and manipulation. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, USA, vol. 1, pp. 28–35 (1993)Google Scholar
  2. 2.
    Kolmanovsky, I., McClamroch, N.: Developments in nonholonomic control problems. IEEE Control Systems Magazine 15(6), 20–36 (1995)CrossRefGoogle Scholar
  3. 3.
    Tanner, H.G., Loizou, S., Kyriakopoulos, K.J.: Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation 19(1), 53–64 (2003)CrossRefGoogle Scholar
  4. 4.
    Sharma, B.N., Vanualailai, J., Prasad, A.: Trajectory planning and posture control of multiple mobile manipulators. International Journal of Applied Mathematics and Computation 2(1), 11–31 (2010)Google Scholar
  5. 5.
    Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. Journal of Dynamic Systems, Measurement and Control 129(5), 571–583 (2007)CrossRefGoogle Scholar
  6. 6.
    Klancar, G., Matko, D., Blazic, S.: Wheeled mobile robots control in a linear platoon. Journal of Intelligent and Robotic Systems 54(5), 709–731 (2009)CrossRefGoogle Scholar
  7. 7.
    Mazo, M., Speranzon, A., Johansson, K., Hu, X.: Multi-robot tracking of a moving object using directional sensors. In: IEEE International Conference on Robotics and Automation - ICRA 2004, vol. 2, pp. 1103–1108 (2004)Google Scholar
  8. 8.
    Zavlanos, M.M., Pappas, G.J.: Dynamic assignment in distributed motion planning with local coordination. IEEE Transaction on Robotics 24(1), 232–242 (2008)CrossRefGoogle Scholar
  9. 9.
    Fruchard, M., Morin, P., Samson, C.: A framework for the control of nonholonomic mobile manipulators. In: Rapport De Recherche INRIA, vol. 5556, pp. 1–52 (2005)Google Scholar
  10. 10.
    Bayle, B., Fourquet, J.-Y., Lamiraux, F., Renaud, M.: Kinematic control of wheeled mobile manipulators. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Switzerland, vol. 1, pp. 1572–1577 (2002)Google Scholar
  11. 11.
    De Luca, A., Oriolo, G., Giordano, P.R.: Kinematic Control of Nonholonomic Mobile Manipulators in the Presence of Steering Wheels. In: IEEE International Conference on Robotics and Automation, Alaska, USA, pp. 1792–1798 (2010)Google Scholar
  12. 12.
    Tang, C.P., Miller, P.T., Krov, V.N.: Ryu, Ji-C., Agrawal, S.K.: Kinematic control of a nonholonomic wheeled mobile manipulator - a differential flatness aproach. In: Proceedings of ASME Dynamic Systems and Control Conference, Ann Arbor, Michigan, USA, pp. 1–8 (2008)Google Scholar
  13. 13.
    Brockett, R.W.: Asymptotic Stability and Feedback Stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhauser, Boston (1983)Google Scholar
  14. 14.
    Solea, R., Cernega, D.C.: Sliding Mode Control for Trajectory Tracking Problem - Performance Evaluation. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 865–874. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Solea, R., Nunes, U.: Trajectory planning and sliding-mode control based trajectory-tracking for cybercars. In: Integrated Computer-Aided Engineering, vol. 14(1), pp. 33–47. IOS Press, Amsterdam (2007)Google Scholar
  16. 16.
    Gao, W., Hung, J.: Variable structure control of nonlinear systems: A new approach. IEEE Transactions on Industrial Electronics 40(1), 45–55 (1993)CrossRefGoogle Scholar
  17. 17.
    Slotine, J., Li, W.: Applied Nonliner Control. Prentice Hall, New Jersey (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Automation and Electrical Engineering“Dunarea de Jos” University of GalatiGalatiRomania

Personalised recommendations