Advertisement

An Economical Testbed for Cooperative Control and Sensing Strategies of Robotic Micro-vehicles

  • David S. Hermina Martinez
  • Maximillian Gonzalez
  • Xinheng Huang
  • Benjamin Irvine
  • Chung H. Hsieh
  • Yuan R. Huang
  • Martin B. Short
  • Andrea L. Bertozzi
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

Laboratory testbeds are an important part of the design of cooperative control algorithms. Sensor noise, communication delays, dropped packets, and network connectivity issues can all affect algorithm performance in different ways, and although these sources of error can be included in simulations, the degree of their effects is often not known until one attempts to implement the algorithm on real platforms. Moreover, by quantitatively assessing these constraints, one can propose new model problems of relevance to the design of these algorithms. The UCLA Applied Mathematics Laboratory is at the forefront of the development and testing of cost-efficient micro-vehicle testbeds. This work describes the third generation UCLA economical cooperative control testbed, and is an updated and expanded version of [1]. Here, we describe the setup of the testbed in detail, and demonstrate practical use of the testbed for algorithm validation by implementing cooperative steering and barrier avoidance algorithms.

Keywords

Robotics testbed Mobile robots Cooperative motion Barrier avoidance Target detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez, M., Huang, X., Martinez, D.S.H., Hsieh, C.H., Huang, Y.R., Irvine, B., Short, M.B., Bertozzi, A.L.: A third generation micro-vehicle testbed for cooperative control and sensing strategies. In: Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics (2011)Google Scholar
  2. 2.
    Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Autonomous Robots 30, 73–86 (2011)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown non-convex environments. In: 10th International Symposium on Distributed Autonomous Robots. Springer (2010)Google Scholar
  4. 4.
    Jin, Z., Waydo, S., Wildanger, E.B., Lammers, M., Scholze, H., Foley, P., Held, D., Murray, R.M.: MVWT-II: the second generation Caltech Multi-Vehicle Wireless Testbed. In: Proceedings of the American Control Conference, pp. 5321–5326 (2004)Google Scholar
  5. 5.
    Turgut, A.E., Gokçe, F., Celikkanat, H., Bayındır, L., Sahin, E.: Kobot: A mobile robot designed specifically for swarm robotics research. Technical report, Department of Computer Engineering, Middle East Technical University, Ankara, Turkey (2007)Google Scholar
  6. 6.
    Cruz, D., McClintock, J., Perteet, B., Orqueda, O.A.A., Cao, Y., Fierro, R.: Decentralized cooperative control - a multivehicle platform for research in networked embedded systems. IEEE Control Systems Magazine 27, 58–78 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Punpaisarn, S., Sujitjorn, S.: SUT-CARG car-like robots: their electronics and control architecture. WSEAS Transactions on Circuits and Systems 7, 579–589 (2008)Google Scholar
  8. 8.
    McLain, T., Beard, R.W.: Unmanned air vehicle testbed for cooperative control experiments. In: Proceedings of the American Control Conference, pp. 5327–5331 (2004)Google Scholar
  9. 9.
    Azarnasab, E., Hu, X.: An integrated multi-robot test bed to support incremental simulation-based design. In: Proceedings of the IEEE International Conference on System of Systems Engineering (2007)Google Scholar
  10. 10.
    Sibley, G., Rahimi, M., Sukhatme, G.: Robomote: A tiny mobile robot platform for large-scale sensor networks. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (2002)Google Scholar
  11. 11.
    Hsieh, C.H., Chuang, Y.L., Huang, Y., Leung, K.K., Bertozzi, A.L., Frazzoli, E.: An economical micro-car testbed for validation of cooperative control strategies. In: Proceedings of the American Control Conference, pp. 1446–1451 (2006)Google Scholar
  12. 12.
    Leung, K.K., Hsieh, C.H., Huang, Y.R., Joshi, A., Voroninski, V., Bertozzi, A.L.: A second generation micro-vehicle testbed for cooperative control and sensing strategies. In: Proceedings of the American Control Conference, pp. 1900–1907 (2007)Google Scholar
  13. 13.
    Real Time Engineers Ltd.: FreeRTOS-A Free RTOS for ARM7, ARM9, Cortex-M3, MSP430, MicroBlaze, AVR, x86, PIC32, PIC24, dsPIC, H8S, HCS12 and 8051, http://www.freertos.org
  14. 14.
    Hermina Martinez, D.S.: Integration of 3rd generation vehicles to the applied mathematics laboratory autonomous micro-vehicle testbed. Master’s thesis, Department of Electrical Engineering, University of California, Los Angeles (2010)Google Scholar
  15. 15.
    Morgan, D.S., Schwartz, I.B.: Dynamic coordinated control laws in multiple agent models. Physics Letters A 340, 121–131 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Marshall, J.A., Fung, T., Broucke, M.E., D’Eleuterio, G.M.T., Francis, B.A.: Experimental validation of multi-vehicle coordination strategies. In: Proceedings of the American Control Conference, pp. 1091–1095 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David S. Hermina Martinez
    • 1
  • Maximillian Gonzalez
    • 2
  • Xinheng Huang
    • 1
  • Benjamin Irvine
    • 1
  • Chung H. Hsieh
    • 3
  • Yuan R. Huang
    • 3
  • Martin B. Short
    • 1
  • Andrea L. Bertozzi
    • 1
  1. 1.University of CaliforniaLos AngelesU.S.A.
  2. 2.Harvey Mudd CollegeClaremontU.S.A.
  3. 3.Anteros Labs, IncTorranceU.S.A.

Personalised recommendations